BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (4): 1197-1210.
• Special Issue for the 2023 Glass Science and Technology Conference • Previous Articles Next Articles
HOU Huanran1, SHI Xiaofei1, JIN Yangli1, WANG Yanhang1, LI Yuanyuan2, ZU Chengkui1
Received:
2023-12-18
Revised:
2024-02-05
Online:
2024-04-15
Published:
2024-04-17
CLC Number:
HOU Huanran, SHI Xiaofei, JIN Yangli, WANG Yanhang, LI Yuanyuan, ZU Chengkui. Research Progress of Ultra-Thin Metal Based Electromagnetic Shielding Glass[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1197-1210.
[1] 石晓飞, 侯焕然, 金扬利, 等. 雷达波屏蔽隐身与光学透明兼容技术研究进展[J]. 硅酸盐通报, 2022, 41(11): 4003-4020. SHI X F, HOU H R, JIN Y L, et al. Research progress of compatibility technology of radar shielding stealth and optical transparency[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4003-4020 (in Chinese). [2] 黄智宇, 陈宏辉, 马文乐, 等. 太赫兹隐身及屏蔽材料研究进展[J]. 高等学校化学学报, 2019, 40(6): 1103-1115. HUANG Z Y, CHEN H H, MA W L, et al. Research progress on terahertz stealth and shielding materials[J]. Chemical Journal of Chinese Universities, 2019, 40(6): 1103-1115 (in Chinese). [3] 黎嘉威, 马泽南, 贺爱娜, 等. 金属电磁屏蔽材料的研究进展[J]. 宁波大学学报(理工版), 2022, 35(4): 93-108. LI J W, MA Z N, HE A N, et al. Recent progress of metal electromagnetic shielding materials[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2022, 35(4): 93-108 (in Chinese). [4] 隋子桐, 时方晓, 唐明猛, 等. 柔性透明导电氧化物薄膜的制备及应用进展[J]. 能源化工, 2022, 43(1): 38-42. SUI Z T, SHI F X, TANG M M, et al. Preparation and application progress of flexible transparent conductive oxide films[J]. Energy Chemical Industry, 2022, 43(1): 38-42 (in Chinese). [5] SHAHBAZ SALEEM M, BILAL HANIF M, GREGOR M, et al. Nanostructured multi-layer MgF2/ITO coatings prepared via e-beam evaporation for efficient electromagnetic interference shielding performance[J]. Applied Surface Science, 2022, 596: 153584. [6] 韩银龙, 孙文波, 王晓白, 等. 金属网格透明薄膜的电磁屏蔽性能研究[J]. 航空制造技术, 2022, 65(22): 101-107. HAN Y L, SUN W B, WANG X B, et al. Electromagnetic interference shielding performance of transparent metal-mesh film[J]. Aeronautical Manufacturing Technology, 2022, 65(22): 101-107 (in Chinese). [7] SONG S M, CHO S M. Voidless metal lines sintered with intense pulsed light and their applications as transparent metal-mesh electrodes[J]. Materials Chemistry and Physics, 2023, 303: 127821. [8] KIM M H, JOH H, HONG S H, et al. Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films[J]. Current Applied Physics, 2019, 19(1): 8-13. [9] 卢 健, 危 韦, 杨 光, 等. 银纳米线薄膜的制备及电磁屏蔽性能研究[J]. 化工新型材料, 2019, 47(9): 104-108+113. LU J, WEI W, YANG G, et al. Preparation of silver nanowire film and its application in electromagnetic shielding[J]. New Chemical Materials, 2019, 47(9): 104-108+113 (in Chinese). [10] SAHOO R, SUNDARA R, SUBRAMANIAN V. Influence of molecular weight of PVP on the structure of silver nanowires for EMI shielding application[J]. Materials Today: Proceedings, 2023, 94: 29-34. [11] WANG C B, GUO Y B, CHEN J W, et al. Transparent and flexible electromagnetic interference shielding film based on Ag nanowires/ionic liquids/thermoplastic polyurethane ternary composites[J]. Composites Communications, 2023, 37: 101444. [12] 鹿春航, 范文渊, 赵佳扬等. 聚合物基电磁屏蔽复合材料的研究进展[J]. 化工新型材料, 2023, 51(增刊2): 38-41+47. LU C H, FAN W Y, ZHAO J Y, et al. Research progress of polymer matrix composites for electromagnetic interference shielding[J]. New Chemical Materials, 2023, 51(supplement 2): 38-41+47 (in Chinese). [13] MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 403: 126438. [14] LI W C, ZHANG B H, YING Y, et al. An optically transparent unequal proportional coding metasurface with absorption and diffusion integrated mechanism for ultra-broadband RCS reduction[J]. Optical Materials, 2022, 133: 112801. [15] HAO J X, ZHANG B Z, JING H H, et al. A transparent ultra-broadband microwave absorber based on flexible multilayer structure[J]. Optical Materials, 2022, 128: 112173. [16] HUANG J H, LIU X H, LU Y H, et al. Seed-layer-free growth of ultra-thin Ag transparent conductive films imparts flexibility to polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 184: 73-81. [17] WANG Z X, JIAO B, QING Y C, et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2826-2834. [18] GUILLÉN C, HERRERO J. TCO/metal/TCO structures for energy and flexible electronics[J]. Thin Solid Films, 2011, 520(1): 1-17. [19] 肖鹏远, 焦晓宁. 电磁屏蔽原理及其电磁屏蔽材料制造方法的研究[J]. 非织造布, 2010, 18(5): 15-19. XIAO P Y, JIAO X N. Electromagnetic shielding theory and methods of making electromagnetic shielding materials[J]. Nonwovens, 2010, 18(5): 15-19 (in Chinese). [20] LEE J H, JANG J W, SOHN S H, et al. Electromagnetic interference (EMI) shielding efficiency (SE) characteristics of the ITO/Ag multilayer structure[J]. Molecular Crystals and Liquid Crystals, 2007, 470(1): 107-120. [21] 林鸿宾, 陆万顺. 电磁屏蔽原理及电磁屏蔽玻璃[J]. 玻璃, 2008, 35(3): 39-42. LIN H B, LU W S. Principle of electromagnetic shield and electromagnetic shielding glass[J]. Glass, 2008, 35(3): 39-42 (in Chinese). [22] 梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2): 61-68+103. LIANG Y L, HUANG X J, YAO L X, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC, 2021(2): 61-68+103 (in Chinese). [23] LAM K K, NG S M, WONG H F, et al. Effect of thickness on the optical and electrical properties of ITO/Au/ITO sandwich structures[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13437-13446. [24] OZBAY S, ERDOGAN N, ERDEN F, et al. Surface free energy analysis of ITO/Au/ITO multilayer thin films on polycarbonate substrate by apparent contact angle measurements[J]. Applied Surface Science, 2020, 529: 147111. [25] ZHANG L, PERSAUD R, MADEY T E. Ultra-thin metal films on a metal oxide surface: growth of Au on TiO2 (110)[J]. Physical Review B, 1997, 6(16): 10549. [26] TOM T, ROS E, LÓPEZ-PINTÓ N, et al. Influence of co-sputtered Ag: Al ultra-thin layers in transparent V2O5/Ag: Al/AZO hole-selective electrodes for silicon solar cells[J]. Materials, 2020, 13(21): 4905. [27] PLYUSNIN N I. Formation of a nanophase wetting layer and metal growth on a semiconductor[J]. Technical Physics Letters, 2018, 44: 980. [28] CHOI H W, THEODORE N D, ALFORD T L. ZnO-Ag-MoO3 transparent composite electrode for ITO-free, PEDOT: pss-free bulk-heterojunction organic solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 446-450. [29] GHOSH D S, LIU Q, MANTILLA-PEREZ P, et al. Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells[J]. Advanced Functional Materials, 2015, 25(47): 7309-7316. [30] ZOU J Y, LI C Z, CHANG C Y, et al. Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells[J]. Advanced Materials, 2014, 26(22): 3618-3623. [31] 吴杨慧, 王俊杰, 赖森锋, 等. 用于航空电磁防护和智能隐身的光学透明柔性宽带吸波器的试验研究[J]. 航空科学技术, 2019, 30(5): 70-74. WU Y H, WANG J J, LAI S F, et al. Experimental study on optically transparent flexible broadband absorber for aviation electromagnetic protection and intelligent stealth[J]. Aeronautical Science & Technology, 2019, 30(5): 70-74 (in Chinese). [32] 黄 星, 任家飞, 李齐方, 等. 聚合物基柔性透明电磁屏蔽复合材料研究进展[J]. 复合材料学报, 2023, 40(6): 3153-3166. HUANG X, REN J F, LI Q F, et al. Research progress of polymer-based flexible transparent electromagnetic shielding composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3153-3166 (in Chinese). [33] ZHANG C, ZHAO D W, GU D E, et al. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics[J]. Advanced Materials, 2014, 26(32): 5696-5701. [34] WANG D P, QU Z M, WANG Y Y, et al. Effects of Al-doping concentration on the structure and electromagnetic shielding properties of transparent Ag thin films[J]. Optical Materials, 2023, 135: 113353. [35] WANG D P, QU Z M, WANG Y Y, et al. Role of Cu-doping concentration in the synthesis, microstructure and properties of Ag thin films via magnetron co-sputtering method[J]. Vacuum, 2023, 216: 112437. [36] 孟 真, 李广德, 崔光振, 等. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 1-8. MENG Z, LI G D, CUI G Z, et al. Research progress of infrared/radar compatible stealth materials based on metamaterials[J]. Materials Reports, 2023, 37(21): 1-8 (in Chinese). [37] JI C G, LIU D, ZHANG C, et al. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100[J]. Nature Communications, 2020, 11(1): 3367. [38] ZHANG C, JI C G, PARK Y, et al. Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications (advanced optical materials 3/2021)[J]. Advanced Optical Materials, 2021, 9: 2170009. [39] SCHWAB T, SCHUBERT S, HOFMANN S, et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes[J]. Advanced Optical Materials, 2013, 1(10): 707-713. [40] MÄKELÄ M, HATANPÄÄ T, MIZOHATA K, et al. Studies on thermal atomic layer deposition of silver thin films[J]. Chemistry of Materials, 2017, 29(5): 2040-2045. [41] YEH M H, CHEN P H, YANG Y C, et al. Investigation of Ag-TiO2 interfacial reaction of highly stable Ag nanowire transparent conductive film with conformal TiO2 coating by atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10788-10797. [42] 刘 静, 刘 丹, 顾真安. 介质/金属/介质多层透明导电薄膜研究进展[J]. 材料导报, 2005, 19(8): 9-12. LIU J, LIU D, GU Z A. Research progress of D/M/D transparent conductive multilayer films[J]. Materials Review, 2005, 19(8): 9-12 (in Chinese). [43] 张 康, 褚向前, 刘丽华, 等. 介质/金属/介质透明导电薄膜研究进展[J]. 真空科学与技术学报, 2017, 37(11): 1067-1074. ZHANG K, CHU X Q, LIU L H, et al. Latest progress of dielectric/metal/dielectric transparent conductive thin films[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(11): 1067-1074 (in Chinese). [44] TAN D C, JIANG C M, LI Q K, et al. Development and current situation of flexible and transparent EM shielding materials[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 25603-25630. [45] LIM H S, OH J M, KIM J W. Technical trends of flexible, transparent electromagnetic interference shielding film[J]. Journal of the Microelectronics and Packaging Society, 2021, 28(1): 21-29. [46] WANG H Y, JI C G, ZHANG C, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11782-11791. [47] CHOI H J, PARK B J, EOM J H, et al. Simultaneous realization of electromagnetic interference shielding, hydrophobic qualities, and strong antibacterial activity for transparent electronic devices[J]. Current Applied Physics, 2016, 16(12): 1642-1648. [48] 廖敦微, 郑月军, 陈 强, 等. 随机金属网栅透明导电薄膜研究进展及应用[J]. 激光与光电子学进展, 2023, 60(19): 3788/LOP221450. LIAO D W, ZHENG Y J, CHEN Q, et al. Research progress and application of random metal grid transparent conductive films[J]. Laser & Optoelectronics Progress, 2023, 60(19): 3788/LOP221450 (in Chinese). [49] ERDOGAN N, ERDEN F, ASTARLIOGLU A T, et al. ITO/Au/ITO multilayer thin films on transparent polycarbonate with enhanced EMI shielding properties[J]. Current Applied Physics, 2020, 20(4): 489-497. [50] JENIFER K, PARTHIBAN S. Highly stable, ultra-thin Au embedded zinc tin oxide multilayer transparent conductive thin films[J]. Current Applied Physics, 2023, 53: 94-103. [51] WANG G H, HAO L L, ZHANG X D, et al. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2022, 607: 89-99. [52] 许君君, 黄金华, 盛 伟, 等. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881. XU J J, HUANG J H, SHENG W, et al. Research progress on ultrathin metal transparent conductive films and their applications[J]. Materials Reports, 2019, 33(11): 1875-1881 (in Chinese). [53] LI D, LI T, ZHANG J, et al. Highly stable and transparent conductive film realized by semi-embedded polydopamine/silver nanowire network[J]. Materials Today Communications, 2020, 25: 101551. [54] WANG H Y, ZHENG D N, ZHANG Y L, et al. High-performance transparent ultrabroadband electromagnetic radiation shielding from microwave toward terahertz[J]. ACS Applied Materials & Interfaces, 2023, 15(42): 49487-49499. [55] LEE J, HONG J, Patel M, et al. Transparent electromagnetic wave shielding film of ITO/Ag/ITO[J]. Korean Institute of Electrical Engineers, 2022, 71(3): 512-516. [56] WANG H Y, ZHANG Y L, JI C G, et al. Transparent perfect microwave absorber employing asymmetric resonance cavity[J]. Advanced Science, 2019, 6(19): 1901320. [57] 赵亚丽, 马富花, 江 波, 等. ITO/Ag光子晶体薄膜的制备及性能[J]. 光学精密工程, 2015, 23(6): 1516-1522. ZHAO Y L, MA F H, JIANG B, et al. Preparation and properties of ITO/Ag photonic crystal thin films[J]. Optics and Precision Engineering, 2015, 23(6): 1516-1522 (in Chinese). [58] ZHAO Y L, MA F H, LI X F, et al. A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures[J]. Chinese Physics B, 2018, 27(2): 027302. |
[1] | GUO Chen, YANG Liqing, WAN Rui, GUAN Yongmao, CHEN Chao, WANG Pengfei. Research and Development Progress of Electromagnetic Shielding Glass [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(11): 4021-4035. |
[2] | LIU Canhui, TAO Weijie, TAO Yingxue, HE Zhenhua. Effects of Deposition Temperature and Time on Photoluminescence Performance of Porous SiC Film [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3090-3097. |
[3] | LIANG Fei;ZHAO Xiu-jian;NI Jia-miao;ZHENG Min-dong. Effect of Heat Treatment on the Optical and Electrical Properties of Sb:SnO2 Transparent Conduction Films [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(9): 2951-2957. |
[4] | CONG Fang-ling;ZHAO Qing-nan;LIU Xu;LUO Le-ping;GU Bao-bao;DONG Yu-hong;ZHAO Jie. Effects of Sputtering Time on Photoelectric Property of GZO Films [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(12): 3910-3914. |
[5] | GU Bao-bao;ZHAO Qing-nan;LIU Xu;LUO Le-ping;CONG Fang-ling;ZHAO Xiu-jian. Effects of N2/Ar Flow Ratio on Structure and Hardness of TiN Thin Films Deposited on Glass Substrates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(12): 4076-4081. |
[6] | ZHANG Yu-qin;DENG Xiao-ling;LIU Xing-bing;FU Chun-lin;CHENG Ji-ping. Effects of Magnetron Sputtering Parameters on the Properties of BST Thin Films [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2013, 32(12): 2544-2549. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||