[1] 陈永飞. 储能缓释型自发光水泥路面材料的制备与性能研究[D]. 武汉: 武汉轻工大学, 2022. CHEN Y F. Preparation and performance study of energy storage and slow release self luminescent cement pavement materials[D]. Wuhan: Wuhan Polytechnic University, 2022 (in Chinese). [2] 陈永飞, 刘杰胜, 武肖雨, 等. 自发光水泥基材料力学性能的影响因素分析[J]. 武汉轻工大学学报, 2021, 40(3): 42-46. CHEN Y F, LIU J S, WU X Y, et al. Analysis of influencing factors on the mechanical properties of self luminescent cement-based materials[J]. Journal of Wuhan Polytechnic University, 2021, 40(3): 42-46 (in Chinese). [3] LI P, YANG T, MA P F, et al. Luminous and bonding performance of self-luminescent cementitious coatings based on white cement and geopolymer[J]. Construction and Building Materials, 2023, 362: 129814. [4] 高英力, 何 倍, 蒋正武, 等. 超疏水改性自发光水泥基材料的性能与微结构[J]. 建筑材料学报, 2020, 23(1): 192-199+209. GAO Y L, HE B, JIANG Z W, et al. Properties and micro-structure of super-hydrophobic modified self-luminous cement-based materials[J]. Journal of Building Materials, 2020, 23(1): 192-199+209 (in Chinese). [5] 何 倍, 高英力, 冷 政, 等. 光致发光水泥基复合材料的强度与光学特性研究[J]. 功能材料, 2019, 50(7): 7126-7133+7138. HE B, GAO Y L, LENG Z, et al. Study on strength and optical properties of photoluminescence cement-based composites materials[J]. Journal of Functional Materials, 2019, 50(7): 7126-7133+7138 (in Chinese). [6] 高英力, 曲良辰, 何 倍, 等. 超疏水-自发光水泥基复合材料性能及作用机理研究[J]. 硅酸盐通报, 2019, 38(1): 70-76. GAO Y L, QU L C, HE B, et al. Study on properties and mechanism of superhydrophobic-self-luminous cement-based composites[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 70-76 (in Chinese). [7] LI L, WANG Y H, LI J Y, et al. Long lasting luminescence and photocatalytic properties of zinc gallogermanates[J]. Science of Advanced Materials, 2017, 9(3): 591-596. [8] 何 倍. 机场水泥道面超疏水自发光功能层材料性能及机理研究[D]. 长沙: 长沙理工大学, 2018. HE B. Study on properties and mechanism of super-hydrophobic self-luminescent functional layer for airport cement pavement[D].Changsha: Changsha University of Science & Technology, 2018 (in Chinese). [9] 杨佳龙. 长余辉发光粉的制备及其在发光混凝土中的应用[D]. 青岛: 青岛科技大学, 2018. YANG J L. Studyon the preparation of long afterglow phosphors and its application in luminescent concrete[D].Qingdao: Qingdao University of Science & Technology, 2018 (in Chinese). [10] 杨佳龙. 长余辉发光混凝土制备技术的研究[J]. 建设科技, 2017(22): 157. YANG J L. Study on preparation technology of long afterglow luminous concrete[J]. Construction Science and Technology, 2017(22): 157 (in Chinese). [11] 肖敏强. 超疏水-自发光水泥路面材料制备及性能研究[D]. 长沙: 长沙理工大学, 2017. XIAO M Q. A study of the preparation and performance of super-hydrophobic and luminescence cement pavement materials[D].Changsha: Changsha University of Science & Technology, 2017 (in Chinese). [12] HOU X Y, CHENG Y, HU C E, et al. Thermoelectric properties of strontium sulfide via first-principles calculations[J]. Solid State Communications, 2020, 305: 113755. [13] 王 倩. 发光混凝土的制备及性能研究[D]. 沈阳: 沈阳建筑大学, 2013. WANG Q. Study on preparation and properties of luminous concrete[D]. Shenyang: Shenyang Jianzhu University, 2013 (in Chinese). [14] ROJAS-HERNANDEZ R E, RUBIO-MARCOS F, RODRIGUEZ M Á, et al. Long lasting phosphors: SrAl2O4: Eu, Dy as the most studied material[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2759-2770. [15] WU Y, GAN J A, WU X Y. Study on the silica-polymer hybrid coated SrAl2O4: Eu2+, Dy3+ phosphor as a photoluminescence pigment in a waterborne UV acrylic coating[J]. Journal of Materials Research and Technology, 2021, 13: 1230-1242. [16] ZENG P, WEI X T, YIN M, et al. Investigation of the long afterglow mechanism in SrAl2O4: Eu2+/Dy3+ by optically stimulated luminescence and thermoluminescence[J]. Journal of Luminescence, 2018, 199: 400-406. [17] HU X W, YANG H A, GUO T T, et al. Preparation and properties of Eu and Dy co-doped strontium aluminate long afterglow nanomaterials[J]. Ceramics International, 2018, 44(7): 7535-7544. [18] GUO C F, LUAN L, HUANG D X, et al. Study on the stability of phosphor SrAl2O4: Eu2+, Dy3+ in water and method to improve its moisture resistance[J]. Materials Chemistry and Physics, 2007, 106(2/3): 268-272. [19] ALI SIKANDAR M, AHMAD W, KHAN M H, et al. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes[J]. Construction and Building Materials, 2019, 228: 116823. [20] LUITEL H N, WATARI T, CHAND R, et al. Giant improvement on the afterglow of Sr4Al14O25: Eu2+, Dy3+ phosphor by systematic investigation on various parameters[J]. Journal of Materials, 2013, 2013: 1-10. [21] LYU L, CHEN Y X, YU L T, et al. The improvement of moisture resistance and organic compatibility of SrAl2O4: Eu2+, Dy3+ persistent phosphors coated with silica-polymer hybrid shell[J]. Materials, 2020, 13(2): 426. [22] QI T G, XIA H F, ZHANG Z H, et al. Improved water resistance of SrAl2O4: Eu2+, Dy3+ phosphor directly achieved in a water-containing medium[J]. Solid State Sciences, 2017, 65: 88-94. [23] LÜ X D. Silica encapsulation study on SrAl2O4: Eu2+, Dy3+ phosphors[J]. Materials Chemistry and Physics, 2005, 93(2/3): 526-530. [24] HE B, GAO Y L, QU L C, et al. Characteristics analysis of self-luminescent cement-based composite materials with self-cleaning effect[J]. Journal of Cleaner Production, 2019, 225: 1169-1183. [25] WANG W T, SHA A M, LI X Z, et al. Water resistance and luminescent thermal stability of SiO2 coated phosphor and self-luminous cement-based materials: view from the perspective of hydration balance[J]. Construction and Building Materials, 2022, 319: 126086. [26] DANG J T, SONG C H, QIAO M, et al. Characteristics analysis of long afterglow phosphor with SiO2 coating and evaluation its influence on the properties of self-luminescent cement-based materials[J]. Construction and Building Materials, 2023, 407: 133402. [27] ZHONG H, WANG J W, DONG B B, et al. A simple way to prepare a hydrophobic Sr[LiAl3N4]: Eu2+ phosphor with improved moisture resistance[J]. Materials Research Bulletin, 2018, 105: 260-264. [28] YU R, SPIESZ P, BROUWERS H J H. Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses[J]. Cement and Concrete Composites, 2015, 55: 383-394. [29] QIAN H, HUA S D, YUE H F, et al. Utilization of recycled construction powder in 3D concrete printable materials through particle packing optimization[J]. Journal of Building Engineering, 2022, 61: 105236. [30] ZHU C H, LI G, WANG J L, et al. Performance improvement in neutron-shielding ultra-high performance mortar prepared with alkaline-treated boron carbide[J]. Journal of Building Engineering, 2023, 71: 106435. [31] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 荧光粉 第3部分:性能试验方法: GB/T 5838.3—2015[S]. 北京: 中国标准出版社, 2016. State Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Phosphor-part 3: performance test method: GB/T 5838.3—2015[S]. Beijing: Standards Press of China, 2016 (in Chinese). [32] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 荧光粉 第2部分: GB/T 5838.2—2015[S]. 北京: 中国标准出版社, 2016. State Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Phosphor-part 2: GB/T 5838.2—2015[S]. Beijing: Standards Press of China, 2016 (in Chinese). [33] WANG W T, SHA A M, LU Z, et al. Cement filled with phosphorescent materials for pavement: afterglow decay mechanism and properties[J]. Construction and Building Materials, 2021, 284: 122798. [34] GAO Y L, HE B, XIAO M Q, et al. Study on properties and mechanisms of luminescent cement-based pavement materials with super-hydrophobic function[J]. Construction and Building Materials, 2018, 165: 548-559. [35] CHEN B M, SHAO H Y, LI B, et al. Influence of silane on hydration characteristics and mechanical properties of cement paste[J]. Cement and Concrete Composites, 2020, 113: 103743. [36] LI Z, HAO S S, JI W W, et al. Mechanism of long afterglow in SrAl2O4: Eu phosphors[J]. Ceramics International, 2021, 47(23): 32947-32953. |