[1] TAHER M A. Influence of thermally treated phosphogypsum on the properties of Portland slag cement[J]. Resources, Conservation and Recycling, 2007, 52(1): 28-38. [2] POTGIETER J H, POTGIETER S S, MCCRINDLE R I. A comparison of the performance of various synthetic gypsums in plant trials during the manufacturing of OPC clinker[J]. Cement and Concrete Research, 2004, 34(12): 2245-2250. [3] SINGH M. Role of phosphogypsum impurities on strength and microstructure of selenite plaster[J]. Construction and Building Materials, 2005, 19(6): 480-486. [4] 林宗寿, 黄 赟, 水中和. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉: 武汉理工大学出版社, 2015. LIN Z S, HUANG Y, SHUI Z H, et al. Excess-sulfate phosphogypsum slag cement and concrete[M]. Wuhan: Wuhan University of Technology Press, 2015 (in Chinese). [5] LIU Q, YANG C, LYU X J, et al. Evolution of ettringite content and its effects on hydration properties of CaO/fluorgypsum-activated granulated blast furnace slag binders[J]. Advanced Composites and Hybrid Materials, 2021, 4(2): 350-359. [6] WANG Z Y, SHUI Z H, SUN T, et al. Recycling utilization of phosphogypsum in eco excess-sulphate cement: synergistic effects of metakaolin and slag additives on hydration, strength and microstructure[J]. Journal of Cleaner Production, 2022, 358: 131901. [7] MESKINI S, SAMDI A, EJJAOUANI H, et al. Valorization of phosphogypsum as a road material: stabilizing effect of fly ash and lime additives on strength and durability[J]. Journal of Cleaner Production, 2021, 323: 129161. [8] REIJNDERS L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a review[J]. Building and Environment, 2007, 42(2): 1036-1042. [9] AYDıN S, BARADAN B. Mechanical and microstructural properties of heat cured alkali-activated slag mortars[J]. Materials & Design, 2012, 35: 374-383. [10] 徐 方, 李 恒, 孙 涛, 等. 基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计[J]. 复合材料学报, 2022, 39(6): 2821-2828. XU F, LI H, SUN T, et al. Composition design of excess-sulfate phosphogypsum slag cement based on molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2821-2828 (in Chinese). [11] 王善拔, 季尚行, 刘银江, 等. 碱对硫铝酸盐水泥膨胀性能的影响[J]. 硅酸盐学报, 1986, 14(3): 285-292. WANG S B, JI S X, LIU Y J, et al. Effect of alkali on expansion of sulfoaluminate cement[J]. Journal of the Chinese Ceramic Society, 1986, 14(3): 285-292 (in Chinese). [12] 赵士豪, 林喜华, 麻鹏飞, 等. 基于临界钙矾石膨胀破坏的磷石膏基复合胶凝材料的配料计算研究[J]. 无机盐工业, 2020, 52(9): 91-95. ZHAO S H, LIN X H, MA P F, et al. Study on formulation calculation of phosphogypsum-based composite cementitious materials based on expansion and failure of critical AFt[J]. Inorganic Chemicals Industry, 2020, 52(9): 91-95 (in Chinese). [13] 黎良元, 石宗利, 艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J]. 硅酸盐学报, 2008, 36(3): 405-410. LI L Y, SHI Z L, AI Y P. Alkaline activation of gypsum-granulated blast furnace slag cementing materials[J]. Journal of the Chinese Ceramic Society, 2008, 36(3): 405-410 (in Chinese). [14] ZHANG J J, SUN G W, WANG C H, et al. Activation effects and micro quantitative characterization of high-volume ground granulated blast furnace slag in cement-based composites[J]. Cement and Concrete Composites, 2020, 109: 103556. [15] 兰明章, 唐润荣, 陈智丰, 等. 二氧化硅含量对硫铝酸盐水泥性能的影响[J]. 新世纪水泥导报, 2002, 8(4): 33-36+8. LAN M Z, TANG R R, CHEN Z F, et al. Effect of silica dioxide content on properties of sulpho-aluminate cement[J]. Cement Guide for New Epoch, 2002, 8(4): 33-36+8 (in Chinese). [16] HUANG Y B, QIAN J S, LU L C, et al. Phosphogypsum as a component of calcium sulfoaluminate cement: hazardous elements immobilization, radioactivity and performances[J]. Journal of Cleaner Production, 2020, 248: 119287. [17] 周 宇, 徐 方, 顾功辉, 等. 地聚合物早期抗压强度及分子动力学模拟[J]. 建筑材料学报, 2021, 24(1): 93-98+120. ZHOU Y, XU F, GU G H, et al. Early compressive strength and molecular dynamics simulation of geopolymer[J]. Journal of Building Materials, 2021, 24(1): 93-98+120 (in Chinese). [18] CHEN B M, QIAO G, HOU D S, et al. Cement-based material modified by in situ polymerization: from experiments to molecular dynamics investigation[J]. Composites Part B: Engineering, 2020, 194: 108036. [19] HOU D S, YU J, LIU Q F, et al. Nanoscale insight on the epoxy-cement interface in salt solution: a molecular dynamics study[J]. Applied Surface Science, 2020, 509: 145322. [20] LIANG Y Z. Mechanical and fracture properties of calcium silicate hydrate and calcium hydroxide composite from reactive molecular dynamics simulations[J]. Chemical Physics Letters, 2020, 761: 138117. [21] LIU L B, ZHANG Y S, TAN K F. Cementitious binder of phosphogypsum and other materials[J]. Advances in Cement Research, 2015, 27(10): 567-570. [22] 杨 光, 赵 宇, 朱伶俐, 等. 碱激发偏高岭土基地质聚合物的制备及抗压强度研究[J]. 硅酸盐通报, 2022, 41(3): 894-902. YANG G, ZHAO Y, ZHU L L, et al. Preparation and compressive strength of geopolymer based on alkali activated metakaolin[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 894-902 (in Chinese). [23] 张 涛, 朱 成. 水泥-硅灰/粉煤灰体系强度、收缩性能与微观结构研究[J]. 硅酸盐通报, 2022, 41(3): 903-912. ZHANG T, ZHU C. Strength, shrinkage performance and microstructure of cement-silica fume/fly ash system[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 903-912 (in Chinese). [24] 翟健梁, 赖 淏, 毛 楠, 等. 复掺矿物掺合料对氯氧镁水泥耐水性能的影响[J]. 硅酸盐通报, 2022, 41(10): 3590-3598. ZHAI J L, LAI H, MAO N, et al. Effect of compound mineral admixture on water resistance of magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3590-3598 (in Chinese). [25] 安 强, 潘慧敏, 王 帅, 等. 粉煤灰和矿渣粒度分布对混凝土微观结构和抗氯离子渗透性的影响[J]. 硅酸盐通报, 2022, 41(3): 884-893. AN Q, PAN H M, WANG S, et al. Effects of fly ash and slag particle size distributions on microstructure and chloride ion penetration resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 884-893 (in Chinese). |