[1] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(增刊1): 234-236. ZHOU W J, ZHANG Z W, XU Y B. Mechanical and frost resistance of inorganic binder stabilized construction waste recycled aggregate[J]. Materials Reports, 2020, 34(supplement 1): 234-236 (in Chinese). [2] 陈 洁, 张 典, 王华锋. 废旧混凝土再生集料路用性能研究[J]. 中国科技信息, 2019(21): 94-96. CHEN J, ZHANG D, WANG H F. Study on road performance of recycled aggregate from waste concrete[J]. China Science and Technology Information, 2019(21): 94-96 (in Chinese). [3] LOTFI S, EGGIMANN M, WAGNER E, et al. Performance of recycled aggregate concrete based on a new concrete recycling technology[J]. Construction and Building Materials, 2015, 95: 243-256. [4] WANG L, WANG J L, QIAN X, et al. An environmentally friendly method to improve the quality of recycled concrete aggregates[J]. Construction and Building Materials, 2017, 144: 432-441. [5] BRAVO M, DE BRITO J, PONTES J, et al. Durability performance of concrete with recycled aggregates from construction and demolition waste plants[J]. Construction and Building Materials, 2015, 77: 357-369. [6] 韦锦帆. 再生混凝土梁的抗弯性能试验研究[D]. 北京: 北京交通大学, 2017. WEI J F. Experimental study on flexural behavior of recycled concrete beams[D]. Beijing: Beijing Jiaotong University, 2017 (in Chinese). [7] 张椿民. 再生粗骨料混凝土钢筋锈蚀和锈裂行为研究[D]. 南宁: 广西大学, 2017. ZHANG C M. Study on corrosion and cracking behavior of reinforced concrete with recycled coarse aggregate[D]. Nanning: Guangxi University, 2017 (in Chinese). [8] 王智威. 高品质再生骨料的生产工艺[J]. 混凝土, 2006(9): 48-50. WANG Z W. Recycling technology for high quality recycled aggregate[J]. Concrete, 2006(9): 48-50 (in Chinese). [9] 王智威. 高品质再生骨料的生产及基本性能试验研究[J]. 混凝土, 2007(3): 74-77. WANG Z W. Production and properties of high quality recycled aggregates[J]. Concrete, 2007(3): 74-77 (in Chinese). [10] 张 莹. 废旧建筑材料制备路用改性再生骨料的性能探究[J]. 中国公路, 2022(24): 94-96. ZHANG Y. Study on properties of road modified recycled aggregate prepared from waste building materials[J]. China Highway, 2022(24): 94-96 (in Chinese). [11] 冯春花, 崔卜文, 郭 晖, 等. 水泥浆-碳化协同增强再生混凝土骨料研究[J/OL]. 材料导报, 2023: 1-10 [2023-01-03]. https://kns.cnki.net/kcms/detail/50.1078.tb.20221229.1428.008.html. FENG C H, CUI B W, GUO H, et al. Study on the synergistic effect of cement slurry-carbonation for enhancing recycled concrete aggregate[J/OL]. Material Introduction, 2023: 1-10 [2023-01-03]. https://kns.cnki.net/kcms/detail/50.1078.tb.20221229.1428.008.html (in Chinese). [12] FANG G H, CHEN J T, DONG B Q, et al. Microstructure and micromechanical properties of interfacial transition zone in green recycled aggregate concrete[J]. Journal of Building Engineering, 2023, 66: 105860. [13] 屠艳平, 陈国夫, 程子扬. 纳米CaCO3对粉煤灰再生骨料混凝土性能及微结构的影响[J/OL]. 建筑材料学报: 1-12 [2023-04-26]. http://kns.cnki.net/kcms/detail/31.1764.TU.20220613.1716.018.html. TU Y P, CHEN G F, CHENG Z Y. The effect of nano CaCO3 on the properties and microstructure of fly ash recycled aggregate concrete[J/OL]. Journal of Building Materials: 1-12 [2023-04-26]. http://kns.cnki.net/kcms/detail/31.1764.TU.20220613.1716.018.html (in Chinese). [14] 郑建岚, 胡 伟, 王雅思. CO2强化再生粗骨料对混凝土中钢筋锈蚀的影响[J]. 武汉大学学报(工学版), 2020, 53(3): 225-231. ZHENG J L, HU W, WANG Y S. Influence of CO2-enhanced recycled coarse aggregate on corrosion performance of rebar in concrete[J]. Engineering Journal of Wuhan University, 2020, 53(3): 225-231 (in Chinese). |