[1] KOSCO J, BIDWELL M, CHA H, et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles[J]. Nature Materials, 2020, 19: 559-565. [2] ZHU Q H, XU Z H, QIU B C, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021, 17(40): 2101070. [3] HERRON J A, KIM J, UPADHYE A A, et al. A general framework for the assessment of solar fuel technologies[J]. Energy & Environmental Science, 2015, 8(1): 126-157. [4] YU Y F, ZHANG J, WU X A, et al. Nanoporous single-crystal-like CdxZn1-xS nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS-amine with cadmium ions[J]. Angewandte Chemie, 2012, 124(4): 921-924. [5] CHENG L, XIANG Q J, LIAO Y L, et al. CdS-based photocatalysts[J]. Energy & Environmental Science, 2018, 11(6): 1362-1391. [6] KUMAR D P, HONG S, REDDY D A, et al. Noble metal-free ultrathin MoS2 nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation[J]. Journal of Materials Chemistry A, 2016, 4(47): 18551-18558. [7] TANG S P, XIA Y, FAN J J, et al. Carbon-platinum dual cocatalysts enhance the photocatalytic hydrogen production performance of CdS hollow spheres[J]. Chinese Journal of Catalysis, 2021, 42(5): 743-752. [8] YANG F, ZHANG Q, ZHANG J, et al. Embedding Pt nanoparticles at the interface of CdS/NaNbO3 nanorods heterojunction with bridge design for superior Z-scheme photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 278: 119290. [9] HAO X Q, WANG Y C, ZHOU J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 302-311. [10] ROSALES M, ZOLTAN T, YADAROLA C, et al. The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity[J]. Journal of Molecular Liquids, 2019, 281: 59-69. [11] 许 迪, 高爱梅, 邓文礼. 簇形和花形CdS纳米结构的自组装及光催化性能(英文)[J]. 物理化学学报, 2008, 24(7): 1219-1224. XU D, GAO A M, DENG W L. Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures[J]. Acta Physico-Chimica Sinica, 2008, 24(7): 1219-1224. [12] WANG L, WEI H W, FAN Y J, et al. Synthesis, optical properties, and photocatalytic activity of one-dimensional CdS@ZnS core-shell nanocomposites[J]. Nanoscale Research Letters, 2009, 4(6): 558-564. [13] 朱宝林, 赵伟玲, 曾晨婕, 等. 一维CdS/TiO2纳米材料的制备及其光催化性能[J]. 催化学报, 2011, 32(10): 1651-1655. ZHU B L, ZHAO W L, ZENG C J, et al. Preparation and photocatalytic performance of one-dimensional CdS/TiO2[J]. Chinese Journal of Catalysis, 2011, 32(10): 1651-1655 (in Chinese). [14] RUAN Q Q, MA X W, LI Y Y, et al. One-dimensional CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H2 evolution[J]. Nanoscale, 2020, 12(39): 20522-20535. [15] 马 华, 苏德泳, 许 炜, 等. CdS微球体的水热法制备及紫外-可见光谱分析[J]. 无机化学学报, 2006, 22(1): 83-86. MA H, SU D Y, XU W, et al. CdS microspheres: hydrothermal synthesis and UV-vis spectroscopy[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(1): 83-86 (in Chinese). [16] VEAMATAHAU A, JIANG B, SEIFERT T, et al. Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states[J]. Physical Chemistry Chemical Physics, 2015, 17(4): 2850-2858. [17] GU W, YANG X, TENG F, et al. Enhanced photo activity by hole concentration on CdS surface[J]. Chemical Physics Letters, 2020, 759: 137945-137951. [18] ZHAO X, FENG J, CHEN S, et al. New insight into the roles of oxygen vacancies in hematite for solar water splitting[J]. Physical Chemistry Chemical Physics, 2017, 19: 1074-1082. [19] YI S, YAN J, WU B, et al. Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation[J]. Applied Catalysis B-Environmental, 2017, 200: 477-483. |