[1] 田玉明, 朱保顺, 力国民, 等. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报, 2019, 47(3): 365-369. TIAN Y M, ZHU B S, LI G M, et al. Influence of coal gangue amount on properties of ceramic proppants[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 365-369 (in Chinese). [2] 赵学松, 刘 琦. 煤基固体废弃物制备压裂支撑剂研究进展[J]. 洁净煤技术, 2023, 29(6): 161-172. ZHAO X S, LIU Q. Review on the preparation of fracturing proppant from coal-based solid waste[J]. Clean Coal Technology, 2023, 29(6): 161-172 (in Chinese). [3] 王云珠. 山西能源体制机制改革重点任务研究[J]. 煤炭经济研究, 2018, 38(4): 37-43. WANG Y Z. Research on key tasks of Shanxi energy system mechanism reform[J]. Coal Economic Research, 2018, 38(4): 37-43 (in Chinese). [4] 胡志中. 山西开启由“黑”变“绿”能源革命[J]. 能源研究与利用, 2019(5): 4-6. HU Z Z. Shanxi opens energy revolution from “black” to “green”[J]. Energy Research & Utilization, 2019(5): 4-6 (in Chinese). [5] 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: SY/T 5108—2014[S]. 北京: 石油工业出版社, 2015. National Energy Administration. Performance testing method for proppants used in hydraulic fracturing and gravel filling operations: SY/T 5108—2014[S]. Beijing: Petroleum Industry Press, 2015 (in Chinese). [6] 罗 啸. 深层页岩气大型压裂工艺技术研究[D]. 成都: 西南石油大学, 2018. LUO X. Study on large-scale fracturing technology of deep shale gas[D]. Chengdu: Southwest Petroleum University, 2018 (in Chinese). [7] 赵金洲, 王 松, 李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业, 2012, 32(4): 46-49+122. ZHAO J Z, WANG S, LI Y M. Difficulties and key techniques in the fracturing treatment of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46-49+122 (in Chinese). [8] 张东晓, 杨婷云. 页岩气开发综述[J]. 石油学报, 2013, 34(4): 792-801. ZHANG D X, YANG T Y. An overview of shale-gas production[J]. Acta Petrolei Sinica, 2013, 34(4): 792-801 (in Chinese). [9] 王一可. 页岩气勘探开发技术综述[J]. 石油知识, 2019(2): 42-43. WANG Y K. Summary of shale gas exploration and development technology[J]. Petroleum Knowledge, 2019(2): 42-43 (in Chinese). [10] 刘春杰, 王 莹, 范利华, 等. 矸石山自燃的成因分析及防治措施[J]. 煤炭技术, 2006, 25(11): 3-6. LIU C J, WANG Y, FAN L H, et al. Analysis on the reason of gangue mountain spontaneous combustion and measure in prevention and cure[J]. Coal Technology, 2006, 25(11): 3-6 (in Chinese). [11] 宋学磊. 利用工业固体废料制备石油压裂陶粒支撑剂的研究[D]. 济南: 齐鲁工业大学, 2019. SONG X L. Study on preparation of ceramsite proppant for oil fracturing from industrial solid waste[D]. Jinan: Qilu University of Technology, 2019 (in Chinese). [12] HAO J Y, HU T, CHENG G J, et al. Effect of feldspar milling on the properties of low-density ceramic proppants[J]. Materials Research Innovations, 2022, 26(1): 1-7. [13] 赵紫石, 崔李鹏, 赵 旭, 等. 利用固废煤矸石制备陶粒支撑剂的研究[J]. 山西煤炭, 2019, 39(1): 1-4. ZHAO Z S, CUI L P, ZHAO X, et al. Preparation of ceramic proppant using solid waste coal gangue[J]. Shanxi Coal, 2019, 39(1): 1-4 (in Chinese). [14] 孟凡生, 孙亚诺, 刘 丽. 我国煤炭资源供给情景分析[J]. 中国能源, 2016, 38(1): 40-42. MENG F S, SUN Y N, LIU L. Analysis of China's coal resource supply situation[J]. Energy of China, 2016, 38(1): 40-42 (in Chinese). [15] 郑林会. 煤矸石基陶粒支撑剂的制备与性能研究[D]. 太原: 太原理工大学, 2019. ZHENG L H. Preparation and properties of gangue-based ceramsite proppant[D]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese). [16] HAO J Y, MA H Q, FENG X, et al. Low-temperature sintering of ceramic proppants by adding solid wastes[J]. International Journal of Applied Ceramic Technology, 2018, 15(2): 563-568. [17] 孔祥辰, 白频波, 宋 伟, 等. 煅烧煤矸石添加量对陶粒支撑剂力学性能的影响[J]. 硅酸盐通报, 2022, 41(6): 2039-2046. KONG X C, BAI P B, SONG W, et al. Effect of calcined coal gangue addition on mechanical properties of ceramic proppant[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2039-2046 (in Chinese). [18] XIE X K, NIU S X, MIAO Y, et al. Preparation and properties of resin coated ceramic proppants with ultra light weight and high strength from coal-series kaolin[J]. Applied Clay Science, 2019, 183: 105364. [19] ZHAO X, ZHANG Z X, LI W X, et al. Basic principle, progress, and prospects of coal gangue ceramic proppants[J]. International Journal of Applied Ceramic Technology, 2023, 20(5): 2681-2699. [20] FENG Y C, MA C Y, DENG J G, et al. A comprehensive review of ultralow-weight proppant technology[J]. Petroleum Science, 2021, 18(3): 807-826. [21] SPEIGHT J G. Handbook of hydraulic fracturing[M]. Hoboken: Wiley, 2016. [22] DING D H, FANG Y F, XIAO G Q, et al. Effects of sinteringtemperature on microstructure and properties of low-grade bauxite-based ceramic proppant[J]. International Journal of Applied Ceramic Technology, 2021, 18(5): 1832-1844. [23] ABD EL-KADER M, ABDOU M I, FADL A M, et al. Novel light-weight glass-ceramic proppants based on frits for hydraulic fracturing process[J]. Ceramics International, 2020, 46(2): 1947-1953. [24] 邱龙会, 王励生, 金作美. 钾长石矿热分解过程的研究[J]. 高等学校化学学报, 1998, 19(3): 345-349. QIU L H, WANG L S, JIN Z M. Studies on the thermal dissociative process of microcline[J]. Chemical Research in Chinese Universities, 1998, 19(3): 345-349 (in Chinese). [25] 陈 勇, 于景坤, 高 杰. 烧结温度对合成镁橄榄石性能的影响[J]. 硅酸盐通报, 2012, 31(3): 622-625. CHEN Y, YU J K, GAO J. Effect of sinterring temperature on the properties of synthetic forsterite[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(3): 622-625 (in Chinese). |