[1] MEHTA P K. Durability of concrete: fifty years of progress?[C]//Durability of Concrete: Second International Conference, Montreal, Canada 1991. American Concrete Institute, 1991. [2] 李镜培, 赵高文, 李 林, 等. 硫酸盐渍土中灌注桩竖向承载力演变规律[J]. 哈尔滨工业大学学报, 2017, 49(6): 84-89. LI J P, ZHAO G W, LI L, et al. Bored piles' vertical bearing strength evolution in sulfate saline soil[J]. Journal of Harbin Institute of Technology, 2017, 49(6): 84-89 (in Chinese). [3] 李镜培, 谢 峰, 李 亮, 等. 硫酸盐侵蚀下混凝土灌注桩的损伤效应[J]. 哈尔滨工业大学学报, 2019, 51(6): 89-94. LI J P, XIE F, LI L, et al. Damage effect of concrete cast-in-situ piles under sulfate attack[J]. Journal of Harbin Institute of Technology, 2019, 51(6): 89-94 (in Chinese). [4] 李镜培, 李 林, 陈浩华, 等. 腐蚀环境中混凝土桩基耐久性研究进展[J]. 哈尔滨工业大学学报, 2017, 49(12): 1-15. LI J P, LI L, CHEN H H, et al. Advances in concrete pile durability in corrosive environment[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 1-15 (in Chinese). [5] 杨 威, 吉学宽, 蒋琼明. 北部湾海域混凝土结构中氯离子扩散模型研究[J]. 山西建筑, 2021, 47(6): 51-56. YANG W, JI X K, JIANG Q M. Study on chloride diffusion model of concrete structure eroded by seawater in Beibu Gulf[J]. Shanxi Architecture(Natural Science Edition), 2021, 47(6): 51-56 (in Chinese). [6] 王家滨, 王 斌, 张凯峰, 等. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061. WANG J B, WANG B, ZHANG K F, et al. Chloride diffusion and its model of shotcrete lining structure with salt-frost degradation[J]. Materials Reports, 2020, 34(16): 16055-16061 (in Chinese). [7] 马亚涛, 郭细伟, 方智勇, 等. 氯离子在混凝土桩基中扩散过程的有限元分析[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(3): 477-482. MA Y T, GUO X W, FANG Z Y, et al. Finite element analysis of chloride ion diffusion process in concrete pile foundation[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2022, 46(3): 477-482 (in Chinese). [8] 喻宣瑞, 刘慧平. 基于贝叶斯机械算法探究氯离子在钢筋混凝土结构中的扩散规律[J]. 建筑材料学报, 2022, 25(12): 1248-1254. YU X R, LIU H P. Chloride Ion Diffusion in Reinforced Concrete Structure Based on Bayesian Mechanical Algorithm[J]. Journal of Building Materials(Natural Science Edition), 2022, 25(12): 1248-1254 (in Chinese). [9] 余红发, 孙 伟. 混凝土氯离子扩散理论模型[J]. 东南大学学报(自然科学版), 2006, 36(增刊2): 68-76. YU H F, SUN W. Model research on chlorine ion diffusion in concretes[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(supplement 2): 68-76 (in Chinese). [10] WANG H L, LU C H, JIN W L, et al. Effect of external loads on chloride transport in concrete[J]. Journal of Materials in Civil Engineering, 2011, 23(7): 1043-1049. [11] RIBEIRO D V, PINTO S A, JÚNIOR N S A, et al. Effects of binders characteristics and concrete dosing parameters on the chloride diffusion coefficient[C]//Congreso Latino-Americano De Patología De Construcción. Alconpat, 2021, 122: 14. [12] FARAHANI A, TAGHADDOS H, SHEKARCHI M. Prediction of long-term chloride diffusion in silica fume concrete in a marine environment[J]. Cement and Concrete Composites, 2015, 59: 10-17. [13] REAL S, BOGAS J A, PONTES J. Chloride migration in structural lightweight aggregate concrete produced with different binders[J]. Construction and Building Materials, 2015, 98: 425-436. [14] 吴贤国, 刘 茜, 王洪涛, 等. 基于随机森林和支持向量机的高性能混凝土抗渗性预测研究[J]. 硅酸盐通报, 2021, 40(3): 829-835+844. WU X G, LIU X, WANG H T, et al. Prediction of impermeability of concrete based on random forest and support vector machine[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 829-835+844 (in Chinese). [15] VAN Q T. Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials[J]. Construction and Building Materials, 2022, 328: 127103. [16] 鲁先龙, 程永锋. 我国输电线路基础工程现状与展望[J]. 电力建设, 2005, 26(11): 25-27+34. LU X L, CHENG Y F. Current status and prospect of transmission tower foundation engineering in China[J]. Electric Power Construction, 2005, 26(11): 25-27+34 (in Chinese). [17] 刘 晓, 王思迈, 卢 磊, 等. 机器学习预测混凝土材料耐久性的研究进展[J]. 硅酸盐学报, 2023, 51(8): 2062-2073. LIU X, WANG S M, LU L, et al. Development on machine learning for durability prediction of concrete materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2062-2073 (in Chinese). [18] 倪沙沙, 迟世春. 基于粒子群支持向量机的高心墙堆石坝渗透系数反演[J]. 岩土工程学报, 2017, 39(4): 727-734. NI S S, CHI S C. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 727-734 (in Chinese). [19] 王一清. 基于机器学习的纯电动二手车价格预测: 以蔚来公司为例[D]. 济南: 山东大学, 2022. WANG Y Q. Price prediction of pure electric used-car based on machine learning: take Nio for example[D]. Jinan: Shandong University, 2022 (in Chinese). [20] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016 (in Chinese). [21] PHAM B T, LE L M, LE T T, et al. Development of advanced artificial intelligence models for daily rainfall prediction[J]. Atmospheric Research, 2020, 237: 104845. [22] SOIZE C. Stochastic models of uncertainties in computational mechanics[M]. Reston, VA: American Society of Civil Engineers, 2012. [23] ABEDINI M, GHASEMIAN B, SHIRZADI A, et al. A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment[J]. Geocarto International, 2018, 34: 1427-1457. [24] 王才进, 张 涛, 骆俊晖, 等. 神经网络反馈分析方法预测土体热阻系数研究[J]. 岩土工程学报, 2019, 41(增刊2): 109-112. WANG C J, ZHANG T, LUO J H, et al. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(supplement 2): 109-112 (in Chinese). [25] 王才进, 蔡国军, 武 猛, 等. 基于人工智能算法预测土体导热系数[J]. 岩土工程学报, 2022, 44(10): 1899-1907. WANG C J, CAI G J, WU M, et al. Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering(Natural Science Edition), 2022, 44(10): 1899-1907 (in Chinese). [26] ZHAO S J, ZHANG T R, MA S L, et al. Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems[J]. Applied Intelligence, 2023, 53(10): 11833-11860. |