[1] 郭红涛. AOD炉炉衬侵蚀分析方法的研究[D]. 长春: 长春工业大学, 2018. GUO H T. Study on erosion analysis method of AOD furnace lining[D]. Changchun: Changchun University of Technology, 2018 (in Chinese). [2] 朱伯铨, 方斌祥, 张文杰, 等. LF炉精炼渣对烧成镁钙砖的侵蚀机制研究[J]. 耐火材料, 2010, 44(2): 81-84. ZHU B Q, FANG B X, ZHANG W J, et al. Corrosion mechanism of ladle furnace refining slag to fired MgO-CaO bricks[J]. Refractories, 2010, 44(2): 81-84 (in Chinese). [3] XU T T, SU Y, SHI T, et al. Improving hydration resistance of MgO-CaO ceramics by in situ synthesized CaZrO3 coatings prepared using a non-hydrolytic sol[J]. Ceramics International, 2021, 47(2): 2165-2171. [4] LIU S K, WEI Y W, WANG J H, et al. Effect of titanium chelating compound on hydration resistance of CaO material[J]. Journal of the American Ceramic Society, 2020, 103(9): 5302-5311. [5] SALMAN G-K, EBRAHIM K, HASSAN G D, et al. A review on recent advances on magnesia-doloma refractories by nano-technology[J]. Journal of Water and Environmental Nanotechnology, 2017, 2(3): 206-222. [6] 王恭一, 赵惠忠, 黄日清, 等. AOD炉渣对镁钙质耐火材料的侵蚀机理[J]. 硅酸盐通报, 2023, 42(4): 1496-1505. WANG G Y, ZHAO H Z, HUANG R Q, et al. Corrosion mechanism of AOD slag on magnesia calcium refractories[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1496-1505 (in Chinese). [7] 刘 磊, 王周福, 何俊鹏, 等. Y2O3和CeO2对镁砂烧结性能及显微结构的影响[J]. 耐火材料, 2012, 46(5): 340-343. LIU L, WANG Z F, HE J P, et al. Effects of Y2O3 and CeO2 on sintering and microstructure of magnesite[J]. Refractories, 2012, 46(5): 340-343 (in Chinese). [8] 余 辉, 韩兵强, 魏耀武, 等. Zr(OH)4添加量及煅烧温度对CaO砂烧结与抗水化性能的影响[J]. 耐火材料, 2017, 51(2): 100-104. YU H, HAN B Q, WEI Y W, et al. Effects of Zr (OH)4 addition and calcination temperature on sintering and hydration resistance of CaO clinker[J]. Refractories, 2017, 51(2): 100-104 (in Chinese). [9] 蔡曼菲, 梁永和, 聂建华, 等. 添加ZrO2对镁钙砂抗水化性能的影响[J]. 武汉科技大学学报(自然科学版), 2019, 42(1): 28-32. CAI M F, LIANG Y H, NIE J H, et al. Effect of ZrO2 addition on the hydration resistance of MgO-CaO clinkers[J]. Journal of Wuhan University of Science and Technology, 2019, 42(1): 28-32 (in Chinese). [10] 赵现华, 尹洪峰, 袁蝴蝶. 烧成MgO-CaO质耐火材料的结构和性能研究[J]. 硅酸盐通报, 2013, 32(1): 35-39. ZHAO X H, YIN H F, YUAN H D. Microstructure and properties of burned MgO-CaO refractories[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(1): 35-39 (in Chinese). [11] 郭 正, 刘百宽, 田晓利, 等. 不同活性MgO对高钙镁钙耐火材料性能的影响[J]. 硅酸盐通报, 2015, 34(11): 3390-3393+3404. GUO Z, LIU B K, TIAN X L, et al. Effects of different activities of MgO on the performance of MgO-CaO refractories with high calcium composition[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(11): 3390-3393+3404 (in Chinese). [12] 马鹏程, 刘 涛, 袁 磊, 等. Y2O3对烧结镁砂致密性的影响[J]. 材料与冶金学报, 2013, 12(3): 173-176+202. MA P C, LIU T, YUAN L, et al. Effect of yttria on densification of sintered magnesia[J]. Journal of Materials and Metallurgy, 2013, 12(3): 173-176+202 (in Chinese). [13] 刘会林. 纳米MgCr2O4和FeCr2O4添加剂对直接结合镁铬耐火材料的微观结构及力学性能的影响[J]. 耐火与石灰, 2022, 47(5): 58-62. LIU H L. Effect of nano-MgCr2O4 and FeCr2O4 additives on microstructure and mechanical properties of directly bonded magnesia-chrome refractories[J]. Refractories & Lime, 2022, 47(5): 58-62 (in Chinese). [14] WEI Y W, ZHANG T, ZHANG Q, et al. Improvement in hydration resistance of CaO granules by addition of Zr(OH)4 and Al(OH)3[J]. Journal of the American Ceramic Society, 2019, 102(3): 1414-1424. [15] 李国丹, 丁冬海, 肖国庆. 纳米碳/镁铝尖晶石复合粉对低碳铝碳耐火材料性能的影响[J]. 硅酸盐学报, 49(9): 2037-2044. LI G D, DING D H, XIAO G Q, Effect of nano-carbon/magnesia-alumina spinel composite powder on properties of low carbon alumina-carbon refractories[J]. Journal of the Chinese Ceramic Society, 49(9): 2037-2044 (in Chinese). [16] 苏玉庆, 朱业宁, 郁柏松, 等. 纳米CaCO3加入量对刚玉质弥散型透气砖性能的影响[J]. 耐火材料, 2022, 56(6): 467-471. SU Y Q, ZHU Y N, YU B S, et al. Effect of nano-CaCO3 addition on properties of corundum based dispersive purging plugs[J]. Refractories, 2022, 56(6): 467-471 (in Chinese). [17] WANG J H, WEI Y W, LI N, et al. Hydration resistance of CaO material prepared by Ca(OH)2 calcination with chelating compound[J]. Materials, 2019, 12(14): 2325. |