[1] ZHANG N, DUAN H B, SUN P W, et al. Characterizing the generation and environmental impacts of subway-related excavated soil and rock in China[J]. Journal of Cleaner Production, 2020, 248: 119242. [2] 国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[R/OL].(2021-02-28)[2024-04-20]. http://www.gov.cn/xinwen/2021-02/28/content_5589283.htm. National Bureau of Statistics. Statistical bulletin on national economic and social development of the People's Republic of China in 2020 [R/OL]. (2021-02-28) [2024-04-20].http://www.gov.cn/xinwen/2021-02/Z8/content_5589283.htm (in Chinese). [3] 杨 涛, 闫美美, 刘帅磊, 等. 地下工程渣土的再生固化土力学性能试验研究[J]. 深圳大学学报(理工版), 2023, 40(5): 578-587. YANG T, YAN M M, LIU S L, et al. The mechanical properties of recycled solidified soil from underground construction spoils[J]. Journal of Shenzhen University (Science and Engineering), 2023, 40(5): 578-587 (in Chinese). [4] 王应富, 张树光, 黄 啸, 等. 磷石膏-钢渣-矿渣固化低液限粉质黏土力学性能及耐久性能研究[J]. 土木工程学报, 2023, 56(增刊1): 12-23. WANG Y F, ZHANG S G, HUANG X, et al. Mechanical property and durability of low liquid limit silty clay solidified by phosphogypsum-steel slag-ground granulated blast-furnace slag [J]. China Civil Engineering Journal, 2023, 56(supplement 1): 12-23 (in Chinese). [5] TAESOON P. Application of construction and building debris as base and subbase materials in rigid pavement[J]. Journal of Transportation Engineering, 2003, 129(5): 558-563. [6] SATO A, NISHIMOTO S, SUZUKI T. Relationship between curing temperature and strength of stabilized soil[C]//Current Practices in Cold Regions Engineering. Reston, VA: American Society of Civil Engineers, 2006: 41. [7] YIN Z H, ZHANG H, ZHANG J M, et al. Mechanical behavior of frozen soil improved with sulphoaluminate cement and its microscopic mechanism[J]. Scientific Reports, 2020, 10: 16297. [8] 刘凤云, 罗怀瑞, 万旭升, 等. 低温养护下电石渣激发偏高岭土基地聚物固化土力学特性及固化机制研究[J]. 岩土力学, 2023, 44(11): 3151-3164. LIU F Y, LUO H R, WAN X S, et al. Study on mechanical properties and curing mechanism of metakaolin based geopolymer solidified soil activated by calcium carbide slag under low temperature curing[J]. Rock and Soil Mechanics, 2023, 44(11): 3151-3164 (in Chinese). [9] 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). [10] 张顶飞, 吕启航, 张 鹏, 等. 基于相应面法的粉煤灰-电石渣地质聚合物固化软土试验研究[J]. 硅酸盐通报, 2023, 42(8): 2821-2829. ZHANG D F, LYU Q H, ZHANG P, et al. Experimental study on soft soil solidified by fly ash and carbide slag geopolymer based on response surface method [J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2821-2829 (in Chinese). [11] 褚付克, 李玉耀, 李 豪. 土壤固化剂类型对稳定土耐久性能影响分析[J]. 化学与粘合, 2023, 45(5): 422-426+463. CHU F K, LI Y Y, LI H. Analysis of the influence of soil curing agent type on the durability of stabilized soil[J]. Chemistry and Adhesion, 2023, 45(5): 422-426+463 (in Chinese). [12] YIP C, LUKEY G, VAN DEVENTER J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation[J]. Cement and Concrete Research, 2004, 35(9): 1688-1697. [13] 王秋生, 修一兵, 齐云鹏, 等. 水泥固化土固化机理及抗冲刷特性[J].长江科学院院报, 2024, 41(8): 142-149. WANG Q S, XIU Y B, QI Y P, et al. Curing mechanism and erosion resistance of cement-solidified soil [J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(8): 142-149 (in Chinese). [14] 谢宇轩, 朱连勇, 王立成. 工业及建筑废弃物固化盐渍土的力学性能和路用性能影响[J]. 科学技术与工程, 2023, 23(19): 8393-8401. XIE Y X, ZHU L Y, WANG L C. Experimental study on the influence of road performance of saline soil solidified by industrial and construction waste materials[J]. Science Technology and Engineering, 2023, 23(19): 8393-8401 (in Chinese). [15] JONGPRADIST P, JUMLONGRACH N, YOUWAI S, et al. Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content[J]. Journal of Materials in Civil Engineering, 2010, 22(1): 49-58. |