[1] 王 辉, 马嘉均, 何世钦, 等. 堆石混凝土单轴受压应力-应变全曲线试验方法研究[J]. 水利水电技术, 2021, 52(2): 61-68. WANG H, MA J J, HE S Q, et al. Study on method for experiment on complete stress-strain curve of rock-filled concrete under uniaxial compression[J]. Water Resources and Hydropower Engineering, 2021, 52(2): 61-68 (in Chinese). [2] JIN F, HUANG D R, LINO M, et al. A brief review of rock-filled concrete dams and prospects for next-generation concrete dam construction technology[J]. Engineering, 2024, 32: 99-105. [3] HE S Q, ZHU Z F, LV M, et al. Experimental study on the creep behaviour of rock-filled concrete and self-compacting concrete[J]. Construction and Building Materials, 2018, 186: 53-61. [4] WEI H, ZHANG G H, SUN F F, et al. Experimental research on the properties of rock-filled concrete[J]. Applied Sciences, 2019, 9(18): 3767. [5] LIANG T, JIN F, HUANG D R, et al. On the elastic modulus of rock-filled concrete[J]. Construction and Building Materials, 2022, 340: 127819. [6] 王 辉, 马嘉均, 周 虎, 等. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346. WANG H, MA J J, ZHOU H, et al. Mechanical behavior of rock-filled concrete with uniaxial compression[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(2): 339-346 (in Chinese). [7] LI X, ZHANG Y F, YANG T, et al. Study on the influence of specimen size and aggregate size on the compressive strength of rock-filled concrete[J]. Applied Sciences, 2023, 13(10): 6246. [8] LI H N, LIU P F, LI C, et al. Experimental research on dynamic mechanical properties of metal tailings porous concrete[J]. Construction and Building Materials, 2019, 213: 20-31. [9] 张国辉, 魏 雄, 杨振东, 等. 细观初始孔隙缺陷对混凝土力学性能的影响[J]. 建筑材料学报, 2024, 27(5): 425-431. ZHANG G H, WEI X, YANG Z D, et al. Influence of mesoscopic initial pore defects on the mechanical properties of concrete[J]. Journal of Building Materials, 2024, 27(5): 425-431 (in Chinese). [10] 席仕军, 左宇军, 孙文吉斌, 等. 基于数字图像处理的含缺陷混凝土破裂过程研究[J]. 应用力学学报, 2020, 37(1): 448-454+499. XI S J, ZUO Y J, SUN W J B, et al. Research on failure process of concrete with defects based on digital image processing[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 448-454+499 (in Chinese). [11] 中华人民共和国水利部. 水工混凝土试验规程: SL/T 352—2020[S]. 北京: 中国水利水电出版社, 2020. Ministry of Water Resources of the People's Republic of China. Test code for hydraulic concrete: SL/T 352—2020[S]. Beijing: China Water Power Press, 2020 (in Chinese). [12] 杜修力, 金 浏. 考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J]. 工程力学, 2012, 29(8): 101-107. DU X L, JIN L. Research on the influence of pores and micro-cracks on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29(8): 101-107 (in Chinese). [13] JIN F, ZHOU H, AN X H. Research on rock-filled concrete dam[J]. International Journal of Civil Engineering, 2019, 17(4): 495-500. [14] 刘保东, 李鹏飞, 李 林, 等. 混凝土含水率对强度影响的试验[J]. 北京交通大学学报, 2011, 35(1): 9-12. LIU B D, LI P F, LI L, et al. Experimental study on influence of water content on concrete strength[J]. Journal of Beijing Jiaotong University, 2011, 35(1): 9-12 (in Chinese). [15] LI D Q, LI Z L, LV C C, et al. A predictive model of the effective tensile and compressive strengths of concrete considering porosity and pore size[J]. Construction and Building Materials, 2018, 170: 520-526.[16] JIN L, YU W X, DU X L, et al. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates[J]. International Journal of Impact Engineering, 2019, 125: 1-12. [17] WEN B, HUANG D, ZHANG L, et al. Study on mechanical properties and size effect of coal gangue concrete at mesoscale[J]. Construction and Building Materials, 2022, 360: 129551. [18] XIAO J Z, LI L, SHEN L, et al. Effects of strain rate on mechanical behavior of modeled recycled aggregate concrete under uniaxial compression[J]. Construction and Building Materials, 2015, 93: 214-222. [19] FU Q, ZHOU Z M, WANG Z H, et al. Insight into dynamic compressive response of carbon nanotube/carbon fiber-reinforced concrete[J]. Cement and Concrete Composites, 2022, 129: 104471. [20] WANG Z H, BAI E L, ZHANG T, et al. Early-age mechanical properties and constitutive model of polystyrene concrete under impact load[J]. Materials Today Communications, 2023, 35: 106039. [21] XIAO J Z, LV Z Y, DUAN Z H, et al. Pore structure characteristics, modulation and its effect on concrete properties: a review[J]. Construction and Building Materials, 2023, 397: 132430. [22] DENG Z P, CHENG H, WANG Z G, et al. Compressive behavior of the cellular concrete utilizing millimeter-size spherical saturated SAP under high strain-rate loading[J]. Construction and Building Materials, 2016, 119: 96-106. [23] FENG S W, ZHOU Y, WANG Y, et al. Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading[J]. International Journal of Impact Engineering, 2020, 140: 103558. [24] CUSATIS G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4): 162-170. [25] YAN D M, LIN G. Dynamic properties of concrete in direct tension[J]. Cement and Concrete Research, 2006, 36(7): 1371-1378. [26] TAKEDA J. Deformation and fracture of concrete subjected to dynamic load[C]//Proceedings of the Conference on Mechanical Behavior of Materials. United Kingdom: Transport and Road Research Laboratory, 1972: 267-277. [27] SOROUSHIAN P. Dynamic constitutive behavior of concrete[C]//Journal Proceedings. United States: ACI Structural Journal, 1986, 83(2): 251-259. [28] 孙吉书, 窦远明, 杨春风, 等. 混凝土动态抗压特性的试验研究[J]. 混凝土, 2011(7): 20-22. SUN J S, DOU Y M, YANG C F, et al. Experimental study on dynamic compressive properties of concrete[J]. Concrete, 2011(7): 20-22 (in Chinese). [29] BISCHOFF P H, PERRY S H. Compressive strain rate effects of concrete[J]. MRS Online Proceedings Library, 1985, 64(1): 151-165. |