[1] RENFORTH P, WASHBOURNE C L, TAYLDER J, et al. Silicate production and availability for mineral carbonation[J]. Environmental Science & Technology, 2011, 45(6): 2035-2041. [2] LIAO S M, WANG D, XIA C Y, et al. China's provincial process CO2 emissions from cement production during 1993—2019[J]. Scientific Data, 2022, 9: 165. [3] SHI W, LI H, LIAO G, et al. Carbon steel slag and stainless steel slag for removal of arsenic from stimulant and real groundwater[J]. International Journal of Environmental Science and Technology, 2018, 15(11): 2337-2348. [4] SHEN H T, FORSSBERG E, NORDSTRÖM U. Physicochemical and mineralogical properties of stainless steel slags oriented to metal recovery[J]. Resources, Conservation and Recycling, 2004, 40(3): 245-271. [5] 赵思雪, 刘志超, 王发洲. 超高强碳矿化材料的设计与制备[J]. 硅酸盐学报, 2023, 51(9): 2128-2137. ZHAO S X, LIU Z C, WANG F Z. Design and preparation of ultra-high strength CO2 solidified carbonate materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2128-2137 (in Chinese). [6] QIAN C X, YU X N, ZHENG T W, et al. Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials[J]. Journal of CO2 Utilization, 2022, 55: 101849. [7] LI C, LI Y, ZHU W H, et al. Carbon dioxide cured building materials as an approach to decarbonizing the calcium carbide related industry[J]. Renewable and Sustainable Energy Reviews, 2023, 186: 113688. [8] 吴胜坤, 黄天勇, 谢 岩, 等. 二氧化碳矿化养护水泥基材料研究进展[J]. 硅酸盐通报, 2023, 42(6): 1897-1911. WU S K, HUANG T Y, XIE Y, et al. Review on CO2 mineral carbonation-cured cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 1897-1911 (in Chinese). [9] XUE K W, WAN C J, XU Y W, et al. Effect of pre-hydration age on phase assemblage, microstructure and compressive strength of CO2 cured cement mortar[J]. Construction and Building Materials, 2022, 325: 126760. [10] CUI H Z, TANG W, LIU W, et al. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms[J]. Construction and Building Materials, 2015, 93: 522-527. [11] XU Z H, ZHANG Z X, HUANG J S, et al. Effects of temperature, humidity and CO2 concentration on carbonation of cement-based materials: a review[J]. Construction and Building Materials, 2022, 346: 128399. [12] LUO S, GUO M Z, ZHU F P, et al. Role of interaction between molding pressure and CO2 pressure in carbonating cement block[J]. Journal of Building Engineering, 2023, 78: 107579. [13] 邹庆焱. 二氧化碳养护混凝土技术研究[D]. 长沙: 中南大学, 2008. ZOU Q Y. Study on carbon dioxide curing concrete technology[D]. Changsha: Central South University, 2008 (in Chinese). [14] 孙一夫, 李凤军, 何 文, 等. 二氧化碳矿化养护加气混凝土试验研究[J]. 洁净煤技术, 2021, 27(2): 237-245. SUN Y F, LI F J, HE W, et al. Investigation on CO2mineralization curing of aerated concretes[J]. Clean Coal Technology, 2021, 27(2): 237-245 (in Chinese). [15] LI J J, JACOBS A D, HITCH M. Direct aqueous carbonation on olivine at a CO2 partial pressure of 6.5 MPa[J]. Energy, 2019, 173: 902-910. [16] BO X H. Effect of different curing environments on strength and carbonation of fly ash concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 65-69. [17] 徐玲琳, 欧阳军, 杨 肯, 等. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 88-92. XU L L, OUYANG J, YANG K, et al. Impacts of curing temperature on the hydration of slag-calcium sulfoaluminate cement[J]. Materials Reports, 2023, 37(11): 88-92 (in Chinese). [18] 耿 欧, 张 鑫, 张铖铠. 再生混凝土碳化深度预测模型[J]. 中国矿业大学学报, 2015, 44(1): 54-58. GENG O, ZHANG X, ZHANG C K. Prediction models of the carbonization depth of recycled concrete[J]. Journal of China University of Mining & Technology, 2015, 44(1): 54-58 (in Chinese). [19] DROUET E, POYET S, LE BESCOP P, et al. Carbonation of hardened cement pastes: influence of temperature[J]. Cement and Concrete Research, 2019, 115: 445-459. [20] 吴春丽, 陈 哲, 谢红波, 等. 不锈钢渣碳化影响因素及其机理研究[J]. 硅酸盐通报, 2022, 41(4): 1369-1379. WU C L, CHEN Z, XIE H B, et al. Influencing factors and mechanism of stainless steel slag carbonation[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1369-1379 (in Chinese). [21] YANG J, ZENG J Y, HE X Y, et al. Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag[J]. Construction and Building Materials, 2022, 330: 127218. [22] FATHY S, GUO L P, RUI M, et al. Comparison of hydration properties of cement-carbon steel slag and cement-stainless steel slag blended binder[J]. Advances in Materials Science and Engineering, 2018 (1): 1-9. [23] HU L L, JIA Y S, CHEN Z, et al. An insight of carbonation-hydration kinetics and microstructure characterization of cement paste under accelerated carbonation at early age[J]. Cement and Concrete Composites, 2022, 134: 104763. [24] YI Y R, MA W Q, SIDIKE A, et al. Synergistic effect of hydration and carbonation of ladle furnace aslag on cementitious substances[J]. Scientific Reports, 2022, 12: 14526. [25] ZAFAR B, CAMPBELL J, COOKE J, et al. Modification of surfaces with vaterite CaCO3 particles[J]. Micromachines, 2022, 13(3): 473. [26] 林忠财, 朱芳萍, 王 敏. 高温碳化养护对干硬性水泥净浆强度及微观性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3337-3344. LIN Z C, ZHU F P, WANG M. Effect of high temperature carbonation curing on strength and microstructure of dry-mixed cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3337-3344 (in Chinese). |