[1] SABĂU M, BOMPA D V, SILVA L F O. Comparative carbon emission assessments of recycled and natural aggregate concrete: environmental influence of cement content[J]. Geoscience Frontiers, 2021, 12(6): 101235. [2] CHEN X, YANG Y, ZHANG C, et al. Valorization of construction waste materials for pavements of sponge cities: a review[J]. Construction and Building Materials, 2022, 356: 129247. [3] LIU J K, CHEN Y X, WANG X T. Factors driving waste sorting in construction projects in China[J]. Journal of Cleaner Production, 2022, 336: 130397. [4] BRASILEIRO K P T V, DE OLIVEIRA NAHIME B, LIMA E C, et al. Influence of recycled aggregates and silica fume on the performance of pervious concrete[J]. Journal of Building Engineering, 2024, 82: 108347. [5] SABOO N, SHIVHARE S, KORI K K, et al. Effect of fly ash and metakaolin on pervious concrete properties[J]. Construction and Building Materials, 2019, 223: 322-328. [6] KHANKHAJE E, KIM T, JANG H, et al. Properties of pervious concrete incorporating fly ash as partial replacement of cement: a review[J]. Developments in the Built Environment, 2023, 14: 100130. [7] SINGH D, SINGH S P. Influence of recycled concrete aggregates and blended cements on the mechanical properties of pervious concrete[J]. Innovative Infrastructure Solutions, 2020, 5(3): 66. [8] SINGH R R, SIDHU A J S. Fracture and fatigue study of pervious concrete with 15%~20% void ratio[J]. Sādhanā, 2020, 45(1): 151. [9] WU F, YU Q L, BROUWERS H J H. Mechanical, absorptive and freeze-thaw properties of pervious concrete applying a bimodal aggregate packing model[J]. Construction and Building Materials, 2022, 333: 127445. [10] HUANG K L, SONG Y, SHENG Y M. Rainstorm resistance of recycled pervious concrete under the coupling of fatigue and freeze-thaw cycles[J]. Buildings, 2024, 14(1): 294. [11] TAMIMI A, TABSH S W, EL-EMAM M. Pervious concrete made with recycled coarse aggregate and reinforced with date palm leaves fibers[J]. Materials, 2023, 16(23): 7496. [12] 葛序尧, 刘佳伟, 梁汝鸣, 等. 不同养护条件对再生混凝土强度的影响[J]. 建筑结构, 2022, 52(增刊2): 1097-1101. YAO X Y, LIU J W, LIANG R M, et al. Influence of different curing conditions on strength ofrecycled concrete[J]. Building structure, 2022, 52(supplement 2): 1097-1101 (in Chinese). [13] 姜 骞, 刘建忠, 周华新, 等. 浆体新拌性能与透水混凝土硬化性能的相关性[J]. 建筑材料学报, 2018, 21(1): 20-25. JIANG Q, LIU J Z, ZHOU H X, et al. Correlation between fresh paste properties and hardened paste performances of pervious concrete[J]. Journal of Building Materials, 2018, 21(1): 20-25 (in Chinese). [14] 宋长强. 环境作用对再生混凝土多重界面微观结构的影响[D]. 青岛: 青岛理工大学, 2023. SONG C Q. Influence of environmental effects on the microstructure of multiple interface in recycled concrete[D]. Qingdao: Qingdao Technology University, 2023 (in Chinese). [15] 丁 崧, 陈 潇, 夏飞跃, 等. 净水型赤泥-矿渣基地聚合物透水混凝土的研究[J]. 建筑材料学报, 2020, 23(1): 48-55. DING S, CHEN X, XIA F Y, et al. Study on red mud-slag based geopolymer pervious concrete with function of water purification[J]. Journal of Building Materials, 2020, 23(1): 48-55 (in Chinese). [16] YANG G H, LI Q Y, GUO Y X, et al. Study on the mechanical properties and durability of recycled aggregate concrete under the internal curing condition[J]. Materials, 2022, 15(17): 5914. [17] 徐行军. 基于CT扫描试验的透水混凝土孔隙分布特征研究[J]. 硅酸盐通报, 2019, 38(11): 3670-3674. XU X J. Pore distribution characteristics of the pervious concrete based on CT scanning tests[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3670-3674 (in Chinese). [18] MEHTA P K. Concrete: microstrucure, properties, and materials[M]. New York: Me Gmw-Hill Education, 2016. |