[1] OH T, CHUN B, LEE S K, et al. Effect of high-volume substituted nanosilica on the hydration and mechanical properties of ultra-high-performance concrete (UHPC)[J]. Cement and Concrete Research, 2024, 175: 107379. [2] 冯 博, 刘 青, 钱永久. 高性能混凝土在氯盐侵蚀和冻融循环作用下的耐久性分析[J]. 西南交通大学学报, 2023, 58(5): 1083-1089. FENG B, LIU Q, QIAN Y J. Durability analysis of high-performance concrete under chloride salt erosion and freeze-thaw cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089 (in Chinese). [3] WANG X Q, JIN Y L, HUANG W, et al. Effect of hybrid basalt and sisal fibers on durability and mechanical properties of lightweight roadbed foam concrete[J]. Case Studies in Construction Materials, 2023, 19: 02592. [4] 陈 晶, 亢晋军, 梁雄雄, 等. 陶瓷纤维和钢纤维对轻骨料混凝土力学性能的影响[J]. 建筑科学, 2023, 39(9): 104-113. CHEN J, KANG J J, LIANG X X, et al. Effect of ceramic fiber and steel fiber on mechanical properties of light aggregate concrete[J]. Building Science, 2023, 39(9): 104-113 (in Chinese). [5] PENG S, WU B, DU X Q, et al. Study on dynamic splitting tensile mechanical properties and microscopic mechanism analysis of steel fiber reinforced concrete[J]. Structures, 2023, 58: 105502. [6] 王志航, 白二雷, 赵明莉, 等. 纳米碳纤维对水泥基材料介电损耗性能的影响[J]. 化工新型材料, 2023, 51(10): 235-238. WANG Z H, BAI E L, ZHAO M L, et al. Effect of carbon nanofiber on dielectric loss performance of cement-based materials[J]. New Chemical Materials, 2023, 51(10): 235-238 (in Chinese). [7] 王丽霖, 林 雪. 纳米碳纤维改性混凝土的力学性能及微观机理[J]. 混凝土与水泥制品, 2020(1): 51-54. WANG L L, LIN X. Mechanical properties and micromechanism of concrete modified by carbon nanofibers[J]. China Concrete and Cement Products, 2020(1): 51-54 (in Chinese). [8] 孟博旭, 许金余, 彭 光. 纳米碳纤维增强混凝土抗冻性能试验[J]. 复合材料学报, 2019, 36(10): 2458-2468. MENG B X, XU J Y, PENG G. Freezing resistance test of nano-carbon fiber reinforced concrete [J]. Journal of Composite Materials, 2019, 36(10): 2458-2468 (in Chinese). [9] 王志航, 白二雷, 潘 璐, 等. 纳米碳纤维增强混凝土动态劈拉破坏的能耗规律研究[J]. 工程爆破, 2023, 29(4): 10-17. WANG Z H, BAI E L, PAN L, et al. Energy consumption laws of carbon nanofiber reinforced concrete in dynamic splitting tensile failure[J]. Engineering Blasting, 2023, 29(4): 10-17 (in Chinese). [10] 王腾蛟, 许金余, 彭 光, 等. 纳米碳纤维增强混凝土耐久性试验[J]. 功能材料, 2019, 50(11): 11114-11121. WANG T J, XU J Y, PENG G, et al. Durability test of carbon nanofiber reinforced concrete[J]. Journal of Functional Materials, 2019, 50(11): 11114-11121 (in Chinese). [11] WANG T J, XU J Y, BAI E L, et al. Research on a sustainable concrete synergistic reinforced with carbon fiber and carbon nanofiber: mechanical properties, durability and environmental evaluation[J]. International Journal of Hydrogen Energy, 2023, 48(90): 35366-35386. [12] 王志航, 白二雷, 许金余, 等. 聚合物改性碳纤维增强混凝土的动态压缩力学性能[J]. 复合材料学报, 2023, 40(3): 1586-1597. WANG Z H, BAI E L, XU J Y, et al. Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1586-1597 (in Chinese). [13] 周 强. 碳纳米管增强粉煤灰混凝土的制备及其性能研究[J]. 功能材料, 2023, 54(9): 9166-9171. ZHOU Q. Preparation and performance study of carbon nanotube reinforced fly ash concrete[J]. Journal of Functional Materials, 2023, 54(9): 9166-9171 (in Chinese). [14] 夏 伟, 许金余, 聂良学, 等. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071. XIA W, XU J Y, NIE L X, et al. Dynamic compressive mechanical properties of carbon nanofibers reinforced concrete under impact loading[J]. Materials Reports, 2021, 35(22): 22063-22071 (in Chinese). [15] KHAN M B, WAQAR A, BHEEL N, et al. Optimization of fresh and mechanical characteristics of carbon fiber-reinforced concrete composites using response surface technique[J]. Buildings, 2023, 13(4): 852. [16] 梁宁慧, 周 侃, 毛金旺, 等. 多尺度聚丙烯纤维混凝土在隧道二衬中的应用[J]. 公路交通科技, 2023, 40(9): 158-165. LIANG H N, ZHOU K, MAO J W, et al. Application of multi-scale polypropylene fiber concrete in secondary lining of tunnel[J]. Journal of Highway and Transportation Research and Development, 2023, 40(9): 158-165. |