BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (11): 3895-3910.
• Cement and Concrete • Next Articles
GAO Mingshuang1,2, PAN Huimin1,2, ZHAO Qingxin1,2
Received:
2024-04-03
Revised:
2024-05-21
Online:
2024-11-15
Published:
2024-11-21
CLC Number:
GAO Mingshuang, PAN Huimin, ZHAO Qingxin. Research Progress on Pore Structure of Shotcrete and Its Influence on Durability[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(11): 3895-3910.
[1] THOMAS A. Sprayed concrete lined tunnel[M]. New York: Taylor & Francis, 2012: 9. [2] HEMPHILL G B. Practical tunnel construction[M]. Hoboken: John Wiley & Sons, 2013: 309-322. [3] JIN X G, HE J, HOU C, et al. The mechanical properties of early aged shotcrete under internal sulfate attack[J]. Materials, 2021, 14(13): 3726. [4] XIAO J Z, LV Z Y, DUAN Z H, et al. Pore structure characteristics, modulation and its effect on concrete properties: a review[J]. Construction and Building Materials, 2023, 397: 132430. [5] 薛邵龙. 高引气喷射混凝土制备与性能研究[D]. 西安: 长安大学, 2014. XUE S L. Preparation and application of shotconcrete with high air content[D]. Xi'an: Chang'an University, 2014 (in Chinese). [6] 张绫纳. 隧道喷射混凝土渗透性能及其盲管水量分析研究[D]. 重庆: 重庆交通大学, 2019. ZHANG L N. Study on permeability of tunnel shotcrete and its blind pipe water volume[D]. Chongqing: Chongqing Jiaotong University, 2019 (in Chinese). [7] CHEN W, LI K L, WU M M, et al. Influence of pore structure characteristics on the gas permeability of concrete[J]. Journal of Building Engineering, 2023, 79: 107852. [8] POWERS T, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. Journalof the American Concrete Institute, 1947, 18(7): 845-880. [9] BRUNAUER S. Tobermorite gel: the heart of concrete[J]. American Scientist, 1962, 50(1): 210-229. [10] 郭剑飞. 混凝土孔结构与强度关系理论研究[D]. 杭州: 浙江大学, 2004. GUO J F. The theoretical research of the pore structure and strength of concrete[D]. Hangzhou: Zhejiang University, 2004 (in Chinese). [11] 吴中伟, 张鸿直. 膨胀混凝土[M]. 北京: 中国铁道出版社, 1990. WU Z W, ZHANG H Z. Expansive concrete [M]. Beijing: China Railway Press, 1990 (in Chinese). [12] 近藤连一, 大门正机. 硬化水泥浆的相组成[M]. 北京: 中国建筑工业出版社, 1982. JINTENG L Y, DAMEN Z J. Phase composition of hardened cement slurry[M]. Beijing: China Construction Industry Press, 1982 (in Chinese). [13] FU H J, WANG X Z, ZHANG L X, et al. Investigation of the factors that control the development of pore structure in lacustrine shale: a case study of block X in the Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1422-1432. [14] MA H Y. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application[J]. Journal of Porous Materials, 2014, 21(2): 207-215. [15] 沈业青, 邓 敏, 莫立武. 孔结构测试技术及其在硬化水泥浆体孔结构表征中的应用[J]. 硅酸盐通报, 2009, 28(6): 1191-1196. SHEN Y Q, DENG M, MO L W. Porosimetry techniques and their applications in pore structure characterization of hardened cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(6): 1191-1196 (in Chinese). [16] 秦 雷, 王 平, 林海飞, 等. 基于氮气吸附和压汞法液氮冻结煤体孔隙结构精细化表征研究[J]. 西安科技大学学报, 2020, 40(6): 945-952+959. QIN L, WANG P, LIN H F, et al. Advanced characterization of pore structure of liquid nitrogen frozen coal using nitrogen adsorption and mercury intrusion methods[J]. Journal of Xi'an University of Science and Technology, 2020, 40(6): 945-952+959 (in Chinese). [17] 刘 军, 邢 锋, 董必钦. 氮气吸附法测得的混凝土微观孔结构[J]. 四川建筑科学研究, 2009, 35(4): 183-185. LIU J, XING F, DONG B Q. The method of nitrogen adsorption measured pore structure of concrete[J]. Sichuan Building Science, 2009, 35(4): 183-185 (in Chinese). [18] STORCK S, BRETINGER H, MAIER W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis[J]. Applied Catalysis A: General, 1998, 174(1/2): 137-146. [19] 陈金妹, 谈 萍, 王建永. 气体吸附法表征多孔材料的比表面积及孔结构[J]. 粉末冶金工业, 2011, 21(2): 45-49. CHEN J M, TAN P, WANG J Y. Characterization of pore structure and specific surface area based on gas adsorption applied for porous materials[J]. Powder Metallurgy Industry, 2011, 21(2): 45-49 (in Chinese). [20] IVAN O, JAN S. Pore structure of hydrated calcium silicates. IV. Analysis of a synthetic tobermorite[J]. Journal of Colloid and Interface Science, 1973, 42(2): 291-297. [21] MITCHELL J, WEBBER J, STRANGE J. Nuclear magnetic resonance cryoporometry[J]. Physics Reports, 2008, 461(1): 1-36. [22] CHEN J H, LI Y L, ZHOU H, et al. Nuclear magnetic resonance study on concrete pore structure evolution under different curing environments[J]. Journal of Management, 2022, 74(5): 1819-1827. [23] JEHNG J Y, SPRAGUE D T, HALPERIN W P. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing[J]. Magnetic Resonance Imaging, 1996, 14(7/8): 785-791. [24] VALCKENBORG R E, PEL L, KOPINGA K. Combined NMR cryoporometry and relaxometry[J]. Journal of Physics D: Applied Physics, 2002, 35(3): 249-256. [25] CHUNG S Y, LEHMANN C, ABD ELRAHMAN M, et al. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches[J]. Applied Sciences, 2017, 7(6): 550. [26] 李易霖, 张云峰, 丛 琳, 等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用: 以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 379-387. LI Y L, ZHANG Y F, CONG L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir: an example from Fuyu oil layer in Daan oilfield[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 379-387 (in Chinese). [27] 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4): 1133-1140. LIU X J, ZHU H L, LIANG L X. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4): 1133-1140 (in Chinese). [28] WONG R C K, CHAU K T. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning[J]. Cement and Concrete Research, 2005, 35(8): 1566-1576. [29] 刘京红, 史攀飞, 杨跃飞, 等. 基于CT试验的混凝土裂纹扩展演化研究[J]. 混凝土, 2017(4): 74-77. LIU J H, SHI P F, YANG Y F, et al. Concrete crack evolution research based on CT test[J]. Concrete, 2017(4): 74-77 (in Chinese). [30] LIU P, CUI S, LI Z H, et al. Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel[J]. Construction and Building Materials, 2019, 207(5): 329-337. [31] FAN L D, ZHANG Z J, YU Y Q, et al. Effect of elevated curing temperature on ceramsite concrete performance[J]. Construction and Building Materials, 2017, 153: 423-429. [32] PICHLER C, SCHMID M, TRAXL R, et al. Influence of curing temperature dependent microstructure on early-age concrete strength development[J]. Cement and Concrete Research, 2017, 102: 48-59. [33] ZHANG Z Q, ZHANG B, YAN P. Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures[J]. Construction and Building Materials, 2016, 121: 483-490. [34] 宿 辉, 黄 顺, 屈春来. 高温对喷射混凝土孔隙结构分布特征的影响分析[J]. 科学技术与工程, 2016, 16(10): 225-229. SU H, HUANG S, QU C L. Analysis the distribution characteristics of pore structure in shotcrete affected by high temperature[J]. Science Technology and Engineering, 2016, 16(10): 225-229 (in Chinese). [35] 何廷树. 混凝土外加剂[M]. 西安: 陕西科学技术出版社, 2003. HE T S. Concrete admixtures[M]. Xi'an: Shaanxi Science and Technology Press, 2003 (in Chinese). [36] 杨文萃. 无机盐对混凝土孔结构和抗冻性影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. YANG W C. Effect of inorganic salts on pore structure and frost resistance of concrete[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). [37] 黄森宝. 新型无碱速凝剂对混凝土性能及孔结构影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. HUANG S B. Influence of new type non-alkali accelerating admixture on concrete performance and pore structure[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [38] 李文霞, 朱 凯. 高含气量湿喷混凝土制备与性能研究[J]. 混凝土, 2016(8): 114-117. LI W X, ZHU K. Preparation and performance of shotcrete with high air content[J]. Concrete, 2016(8): 114-117 (in Chinese). [39] WANG J B, NIU D T, ZHANG Y L. Mechanical properties, permeability and durability of accelerated shotcrete[J]. Construction and Building Materials, 2015, 95: 312-328. [40] NIU D T, WANG J B, WANG Y. Effect of hydration aging and water binder ratio on microstructure and mechanical properties of sprayed concrete[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2015, 30(4): 745-751. [41] 王家滨, 牛荻涛, 张永利. 喷射混凝土力学性能、渗透性及耐久性试验研究[J]. 土木工程学报, 2016, 49(5): 96-109. WANG J B, NIU D T, ZHANG Y L. Investigation of mechanical, permeability and durability performance of shotcrete with and without steel fiber[J]. China Civil Engineering Journal, 2016, 49(5): 96-109 (in Chinese). [42] WANG J B, NIU D T, DING S, et al. Microstructure, permeability and mechanical properties of accelerated shotcrete at different curing age[J]. Construction and Building Materials, 2015, 78: 203-216. [43] 葛兆明, 余成行, 魏 群, 等. 混凝土外加剂[M]. 北京: 化学工业出版社, 2012. GE Z M, YU C X, WEI Q, et al. Concrete admixtures[M]. Beijing: Chemical Industry Press, 2012 (in Chinese). [44] 丁向群, 周睿彤, 王 钰. 硅灰对混凝土抗冻性能及其孔结构的影响[J]. 混凝土, 2017(2): 53-55. DING X Q, ZHOU R T, WANG Y. Effect of silica fume on the frost resistance and pore structure of concrete[J]. Concrete, 2017(2): 53-55 (in Chinese). [45] WAN Z M, HE T S, CHANG N, et al. Effect of silica fume on shrinkage of cement-based materials mixed with alkali accelerator and alkali-free accelerator[J]. Journal of Materials Research and Technology, 2023, 22: 825-837. [46] 张俊儒, 闻毓民, 欧小强. 粉煤灰喷射混凝土孔隙结构的演变特征[J]. 西南交通大学学报, 2018, 53(2): 296-302. ZHANG J R, WEN Y M, OU X Q. Evolutionary characteristics of pore structure of fly ash shotcrete[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 296-302 (in Chinese). [47] 焦耐淇. 喷射钢纤维混凝土耐久性试验研究[D]. 西安: 西安建筑科技大学, 2012. JIAO N Q. Experiment research into steel fiber shotcrete durability[D]. Xi'an: Xi'an University of Architecture and Technology, 2012 (in Chinese). [48] 丁 莎. 喷射混凝土微观结构与宏观性能研究[D]. 西安: 西安建筑科技大学, 2014. DING S. Research on the relationship between microstructure and macroscopic performance of shotcrete[D]. Xi'an: Xi'an University of Architecture and Technology, 2014 (in Chinese). [49] 王家滨. 喷射混凝土耐久性能劣化规律及机理研究[D]. 西安: 西安建筑科技大学, 2016. WANG J B. Study of deterioration law and mechanism of shotcrete durability performance[D]. Xi'an: Xi'an University of Architecture and Technology, 2016 (in Chinese). [50] 赵铁军. 混凝土渗透性[M]. 北京: 科学出版社, 2006. ZHAO T J. Concrete permeability[M]. Beijing: Science Press, 2006 (in Chinese). [51] 潘 刚, 李春岿, 雅各布·拉日诺夫斯基, 等. 基于CT技术的喷射混凝土粗骨料与孔隙分布规律研究[J]. 山东科技大学学报(自然科学版), 2023, 42(5): 40-47. PAN G, LI C K, JAKUB L, et al. Research on coarse aggregate and pore distribution law of shotcrete based on CT technology[J]. Journal of Shandong University of Science and Technology (Natural Science), 2023, 42(5): 40-47 (in Chinese). [52] 周 云. 骨料中粘土质微细颗粒对混凝土性能的影响及控制方法综述[J]. 硅酸盐通报, 2015, 34(2): 433-437+443. ZHOU Y. Effect and control methods of clay microfine in aggregates on concrete performance[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 433-437+443 (in Chinese). [53] 罗健勇, 于本田, 苏俊辉, 等. 机制砂颗粒级配对混凝土性能的影响研究[J]. 公路, 2022, 67(9): 384-388. LUO J Y, YU B T, SU J H, et al. Study on the influence of particle size distribution of machine-made sand on concrete properties[J]. Highway, 2022, 67(9): 384-388 (in Chinese). [54] 方浩然, 张士萍, 牛龙龙. 细骨料对喷射混凝土的力学性能影响研究[J]. 南京工程学院学报(自然科学版), 2022, 20(4): 48-52. FANG H R, ZHANG S P, NIU L L. A study on the influence of fine aggregate on mechanical properties of shotcrete[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2022, 20(4): 48-52 (in Chinese). [55] 内维尔. 混凝土渗透性[M]. 北京: 中国建筑工业出版社, 2011: 216-217. NEI W E. Concrete permeability[M]. Beijing: China Construction Industry Press, 2011: 216-217 (in Chinese). [56] 边文辉. 矿用轻质骨料喷射混凝土的研究[D]. 青岛: 山东科技大学, 2019. BIAN W H. Research on lightweight aggregate shotcrete for mining[D]. Qingdao: Shandong University of Science and Technology, 2019 (in Chinese). [57] BARLUENGA G, GIMÉNEZ M, SEPULCRE A, et al. Effect of full scale pumping at early age and on hardened microstructure and properties of SCC with fly ash in hot-dry curing conditions[J]. Construction and Building Materials, 2018, 191: 1128-1138. [58] LI Y, HAO J, WANG Z G, et al. Influence of ultra-high-rise pumping on microstructure and multi-scale mechanical properties of concrete based on X-ray CT and 3D mesoscopic numerical simulation[J]. Construction and Building Materials, 2021, 267: 120980. [59] HAO J, YU B, LI Y, et al. Effect of high pump pressure on chloride migration in ITZ of concrete[J]. Journal of Building Engineering, 2023, 66: 105926. [60] 马建峰, 涂玉林, 谢昱昊, 等. 800 m超长盘管泵送前后混凝土性能变化及其机理[J]. 建筑材料学报, 2022, 25(12): 1293-1299. MA J F, TU Y L, XIE Y H, et al. Change of concrete performance and its mechanism before and after 800 m super-long coil pumping[J]. Journal of Building Materials, 2022, 25(12): 1293-1299 (in Chinese). [61] FEYS D, DE SCHUTTER G, FATAEI S, et al. Pumping of concrete: understanding a common placement method with lots of challenges[J]. Cement and Concrete Research, 2022, 154: 106720. [62] 陈 超. 无碱速凝剂与水泥适应性的影响因素及机理研究[D]. 上海: 同济大学, 2019. CHEN C. A study on the factors and mechanisms influencing the adaptability of alkali free accelerators to cement[D]. Shanghai: Tongji University, 2019 (in Chinese). [63] 朱蓓蓉, 杨全兵, 黄士元. 除冰盐对混凝土化学侵蚀机理研究[J]. 低温建筑技术, 2000, 22(1): 3-6. ZHU B R, YANG Q B, HUANG S Y. Mechanism of chemical attack of the deicer on concrete[J]. Low Temperature Architecture Technology, 2000, 22(1): 3-6 (in Chinese). [64] 陈树人, 柳梭哲, 王久良. 混凝土孔结构对冰点的影响[J]. 低温建筑技术, 2000, 22(1): 9-17. CHEN S R, LIU S Z, WANG J L. Influence of concrete pore structure on freezing point[J]. Low Temperature Architecture Technology, 2000, 22(1): 9-17 (in Chinese). [65] LAMONTAGNE A, PIGEON M. The influence of polypropylene fibers and aggregate grading on the properties of dry-mix shotcrete[J]. Cement and Concrete Research, 1995, 25(2): 293-298. [66] JOLIN M, BEAUPRÉ D, PIGEON M, et al. Use of set accelerating admixtures in dry-mix shotcrete[J]. Journal of Materials in Civil Engineering, 1997, 9(4): 180-184. [67] 陈建勋. 寒区隧道喷射混凝土冻融损伤机理及抗冻性的研究[D]. 西安: 长安大学, 2013. CHEN J X. Research on freeze-thaw damage mechanism and frost resistance of sprayed concrete in cold region tunnels[D]. Xi'an: Chang'an University, 2013 (in Chinese). [68] 程良奎, 李象范. 岩土锚固·土钉·喷射混凝土: 原理、设计与应用[M]. 北京: 中国建筑工业出版社, 2008: 595-641. CHENG L K, LI X F. Geotechnical, anchorage, soil nail shotcrete-principles, design, and application[M]. Beijing: China Construction Industry Press, 2008: 595-641 (in Chinese). [69] HU Z, DING H, LAI J X, et al. The durability of shotcrete in cold region tunnel: a review[J]. Construction and Building Materials, 2018, 185: 670-683. [70] 蒿 洋, 牛荻涛, 王家滨. 硝酸侵蚀环境喷射混凝土抗冻性试验研究[J]. 混凝土, 2017(12): 154-156. HAO Y, NIU D T, WANG J B. Experimental study on frost resistance of sprayed concrete under coupled nitric acid erosion and freeze-thaw cycles[J]. Concrete, 2017(12): 154-156 (in Chinese). [71] 王家滨, 牛荻涛, 袁 斌. 冻融损伤喷射混凝土本构关系及微观结构[J]. 土木建筑与环境工程, 2016, 38(1): 30-39. WANG J B, NIU D T, YUAN B. Constitutive relation and microstructure on shotcrete after freeze and thaw damage[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(1): 30-39 (in Chinese). [72] WANG J B, NIU D T. Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber[J]. Construction and Building Materials, 2016, 122: 628-636. [73] 赵喜忠. 隧道喷射混凝土抗冻耐久性试验研究[D]. 西安: 长安大学, 2011. ZHAO X Z. Experimental study on tunnels sprayed concrete frost-resistance and durability[D]. Xi'an: Chang'an University, 2011 (in Chinese). [74] 关宝树. 隧道及地下工程喷混凝土支护技术[M]. 北京: 人民交通出版社, 2009. GUAN B S. Tunnel and underground engineering shotcrete support technology[M]. Beijing: China Communication Press, 2009 (in Chinese). [75] 曾鲁平, 赵 爽, 王 伟, 等. 硬化喷射混凝土的气泡结构特性、抗水渗透及抗冻性能[J]. 硅酸盐学报, 2020, 48(11): 1781-1790. ZENG L P, ZHAO S, WANG W, et al. Air-void structure characteristics, water penetration resistance and freeze-thaw resistance of hardened shotcrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1781-1790 (in Chinese). [76] 李志勇, 姚佳良, 张 宇. 关于混凝土抗渗性试验方法的研究[J]. 混凝土, 2006(2): 57-60+69. LI Z Y, YAO J L, ZHANG Y. Testing methods on concrete permeability[J]. Concrete, 2006(2): 57-60+69 (in Chinese). [77] TAN K F, GJøRV O E. The accelerated test of chloride permeability of concrete[J]. Journal of Wuhan University of Technology Materials Science Edition, 2003, 18(2): 57-60. [78] ABBAA A, CARCASSES M, YSSORCHE-CUBAYNES M P. Permeability of mortars and the degree of saturation[J]. 1er Recontre Internationale de Toulouse, 1998. [79] MEHTA P K. Hardened cement paste: Microstructure and its relationship to properties[C]//Proceeding of 8th International Congress of the Chemistry of Cement. 1986: 113-121. [80] 李淑进, 赵铁军, 吴科如. 混凝土渗透性与微观结构关系的研究[J]. 混凝土与水泥制品, 2004(2): 6-8. LI S J, ZHAO T J, WU K R. Relationship btween permeability and microstructure of concrete[J]. China Concrete and Cement Products, 2004(2): 6-8 (in Chinese). [81] CUI L, CAHYADI J H. Permeability and pore structure of OPC paste[J]. Cement and Concrete Research, 2001, 31(2): 277-282. [82] 张 驰, 赵镇浩. 水泥砂浆的孔结构与抗渗性[J]. 重庆建筑大学学报, 1996, 18(3): 61-66. ZHANG C, ZHAO Z H. Pore structure and impermeability of cement mortar[J]. Journal of Civil and Environmental Engineering, 1996, 18(3): 61-66 (in Chinese). [83] PRUDNCIO L R Jr. Accelerating admixtures for shotcrete[J]. Cement and Concrete Composites, 1998, 20(2/3): 213-219. [84] 王家滨, 牛荻涛. 喷射混凝土渗透性、孔结构和力学性能关系研究[J]. 硅酸盐通报, 2018, 37(7): 2101-2108. WANG J B, NIU D T. Relationship among permeability, pore structure and mechanical properties of shotcrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2101-2108 (in Chinese). [85] QIU Q W. A state-of-the-art review on the carbonation process in cementitious materials: fundamentals and characterization techniques[J]. Construction and Building Materials, 2020, 247: 118503. [86] LI Y U, WU Q D. Mechanism of carbonation of mortars and the dependence of carbonation on pore structure[J]. Publication of American Concrete Institute, 1987, 100: 1915-1944. [87] HOUST Y F, WITTMANN F H. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste[J]. Cement and Concrete Research, 1994, 24(6): 1165-1176. [88] GAO Y, DE SCHUTTER G, YE G, et al. The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content[J]. Composites Part B: Engineering, 2014, 60: 1-13. [89] BASHEER L, BASHEER P A M, LONG A E. Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete[J]. Construction and Building Materials, 2005, 19(9): 682-690. [90] 张 誉, 张伟平, 屈文俊. 混凝土结构耐久性概论[M]. 上海: 上海科学技术出版社, 2003. ZHANG Y, ZHANG W P, QU W J. Introduction to durability of concrete structures[M]. Shanghai: Shanghai Science and Technology Press, 2003 (in Chinese). [91] 董振平. 混凝土碳化深度的随机模型和混凝土结构碳化寿命分析[D]. 西安: 西安建筑科技大学, 1998. DONG Z P. Stochastic model of concrete carbonation depth and carbonation life analysis of concrete structure[D]. Xi'an: Xi'an University of Architecture and Technology, 1998 (in Chinese). [92] 马 蕊. 喷射混凝土碳化及硫酸盐侵蚀试验研究[D]. 西安: 西安建筑科技大学, 2014. MA R. Experimental study on shotcrete carbonation and sulfate attack[D]. Xi'an: Xi'an University of Architecture and Technology, 2014 (in Chinese). [93] 王家滨, 牛荻涛, 马 蕊, 等. 喷射混凝土抗碳化性能试验研究[J]. 河北工业大学学报, 2014, 43(6): 5-9+13. WANG J B, NIU D T, MA R, et al. Research of carbonation resistance of shotcrete under accelerating carbonation test[J]. Journal of Hebei University of Technology, 2014, 43(6): 5-9+13 (in Chinese). [94] 张 丹, 牛荻涛, 王家滨. 硝酸侵蚀与碳化耦合作用下粉煤灰喷射混凝土中性化研究[J]. 混凝土, 2016(5): 91-94. ZHANG D, NIU D T, WANG J B. Neutralization study on fly ash shotcrete under the corrosion of nitric acid and carbonation[J]. Concrete, 2016(5): 91-94 (in Chinese). [95] 马昆林, 谢友均, 龙广成, 等. 水泥基材料在硫酸盐结晶侵蚀下的劣化行为[J]. 中南大学学报(自然科学版), 2010, 41(1): 303-309. MA K L, XIE Y J, LONG G C, et al. Deterioration behaviors of sulfate crystallization attack on cement-based material[J]. Journal of Central South University (Science and Technology), 2010, 41(1): 303-309 (in Chinese). [96] 袁 斌, 牛荻涛, 蒿 洋, 等. 干湿循环与盐湖卤水侵蚀共同作用下喷射混凝土的劣化及其机理[J]. 硅酸盐通报, 2017, 36(2): 607-613+619. YUAN B, NIU D T, HAO Y, et al. Deterioration and mechanism of shotcrete under the combined action of salt lake brine erosion and wetting-drying cycles[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 607-613+619 (in Chinese). [97] 王家滨, 牛荻涛, 马 蕊. 硫酸盐侵蚀喷射混凝土损伤层及微观结构研究[J]. 武汉理工大学学报, 2014, 36(10): 105-112. WANG J B, NIU D T, MA R. Study of damage layer thickness and microstructure of shotcrete after sulfate attack[J]. Journal of Wuhan University of Technology, 2014, 36(10): 105-112 (in Chinese). [98] 张中亚. 硫酸盐环境喷射混凝土细观侵蚀机理及剪切特性研究[D]. 重庆: 重庆大学, 2019. ZHANG Z Y. Mesoscopic erosion mechanism and shear properties of shotcrete materials under sulfate-containing environments[D]. Chongqing: Chongqing University, 2019 (in Chinese). [99] 李志龙. 隧道喷射混凝土的硫酸盐腐蚀特性及使用寿命评价研究[D]. 西安: 长安大学, 2019. LI Z L. Study on sulphate corrosion characteristics and life evaluation of tunnel sprayed shotcrete[D]. Xi'an: Chang'an University, 2019 (in Chinese). [100] OKOCHI H, KAMEDA H, HASEGAWA S I, et al. Deterioration of concrete structures by acid deposition—an assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens[J]. Atmospheric Environment, 2000, 34(18): 2937-2945. [101] 王家滨, 牛荻涛. 硝酸侵蚀喷射混凝土NO-3扩散研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(1): 75-82. WANG J B, NIU D T. Study on nitrate ion diffusion of lining shotcrete exposed to nitric acid[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2019, 51(1): 75-82 (in Chinese). [102] 周 宇, 牛荻涛, 王家滨. 海洋水下区喷射混凝土中氯离子扩散性能研究[J]. 混凝土, 2014(12): 14-17. ZHOU Y, NIU D T, WANG J B. Experimental research on chloride ion erosion of shotcret in the marine underwater area[J]. Concrete, 2014(12): 14-17 (in Chinese). [103] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌耐久性能退化规律研究[J]. 硅酸盐通报, 2019, 38(1): 33-40. WANG J B, NIU D T. Research on durability performance deterioration rules of brine-exposed shotcrete in salt lake environment[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 33-40 (in Chinese). |
[1] | LIN Pengzhen, REN Jinbo. Effect of Chloride Erosion on Durability of Concrete Bridges in Saline Alkali Environments [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3235-3243. |
[2] | WANG Hao, TAN Yanbin, LIU Xing, YANG Lu, YUAN Qiang, XIE Binfu, LIU Bo. Influences of Igneous Rock Mineral Materials on Properties of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3244-3251. |
[3] | LI Shaoping, SHAN Junwei, LIU Xiaoqin, GUO Meirong, ZHANG Xuening, JING Hongjun, GAO Meng, CHEN Shaojie. Evolution of Pore Structure in Silica Fume Modified Coal Gangue Concrete under Low Temperature Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3262-3272. |
[4] | CUI Lijun, QIAO Hongxia, CAO Feng, SHU Xiuyuan, SHENG Chenghui. Damage Characteristics of Highland Barley Straw Ash Modified Magnesium Oxychloride Cement Mortar Protected Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3282-3293. |
[5] | DU Zhanyuan, ZHU Yongchang, CUI Zhu, JIAO Yunjie, DONG Xuanjiang, WANG Dongyu, YANG Debo, WANG Hua. Structure and Chemical Durability of Actinide Nuclides Solidified by High-Entropy Pyrochlore (La1/6Pr1/6Nd1/6Sm1/6Eu1/6Gd1/6)2Zr2O7 [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3399-3406. |
[6] | ZHOU Jian, LI Weihua, PI Zhenyu, XU Mingfeng, LI Hui, NIE Song. Research Progress on Carbonation Resistance of Calcium Sulfoaluminate Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2711-2725. |
[7] | CHEN Chengwen, SHAO Lirong, WANG Jinguang, SHAN Junwei, JING Hongjun, GUO Meirong, YE Wanjun. Early Drying Shrinkage Analysis of Vinyl Acetate-Ethylene Modified Plastering Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2778-2787. |
[8] | FAN Xiaochun, YANG Dongsheng, ZHANG Yu, GAO Xu, YU Liju. Influences of Additives on Alkali-Activated Cementitious Materials Drying Shrinkage Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2788-2796. |
[9] | WU Yonghua, YI Ang, HE Juan, KUANG Yufeng, YUAN Yibing. Enhancement Mechanism of Mechanical Properties of Steam-Cured UHPC by Nano-C-S-H/PCE [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2797-2805. |
[10] | LI Lin, WANG Yu, MA Yuying, SHEN Hanqi, LUO Jianghong. Thermal Conductivity and Pore Structure of Foam Concrete Based on Orthogonal Test [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2888-2896. |
[11] | ZHANG Shuhao, JIN Li’an, LI Zongqi, SHEN Lu, CUI Sheng’ai. Performance and Hydration Mechanism of Polymer Double Slurry for Shield Tunnel [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2897-2904. |
[12] | WU Yinjia, WANG Xinjie, ZHU Pinghua, SUN Weihao, XIONG Lei. Effect of Recycled Fine Aggregate on Mechanical Properties and Carbonation Durability of High Ductility Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2984-2995. |
[13] | DENG Xin, LI Jun, LU Zhongyuan, LI Xiaoying, HOU Li, JIANG Jun, YOU Ya, ZHANG Junjin, HE Kewen. Performance of Fully Recycled Aggregate Rockfill Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2996-3004. |
[14] | ZHANG Yudong, ZHANG Jiashuai, JIA Jilong, LI Xiaochen, HUO Gang, XIE Long, MENG Zhipeng, GAO Yuzeng, CAO Yingzhuo. Analysis of Pore Structure and Mechanical Properties of Recycled Concrete with Full Replacement of Coarse Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 3005-3016. |
[15] | ZHANG Weidong, WANG Yuan, SONG Pengfei, WANG Yakun, LIU Qianqian, WANG Xuhao. Research Progress on Multi-Field Coupling Damage Deterioration Mechanism of Concrete in Alpine Region [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2317-2334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||