BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (10): 3772-3786.
• Ceramics • Previous Articles Next Articles
LUO Huangyang1, YANG Xianfeng1, LIU Ziyu1, LIU Peng1, XU Xiewen1, XIE Zhipeng2
Received:
2024-04-09
Revised:
2024-04-28
Online:
2024-10-15
Published:
2024-10-16
CLC Number:
LUO Huangyang, YANG Xianfeng, LIU Ziyu, LIU Peng, XU Xiewen, XIE Zhipeng. Research Progress of Mechanism and Process of Thermal Debinding in 3D-Printed Ceramic Green Body[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3772-3786.
[1] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. [2] LI Q L, QIU Y X, HOU W Q, et al. Slurry flow characteristics control of 3D printed ceramic core layered structure: experiment and simulation[J]. Journal of Materials Science & Technology, 2023, 164: 215-228. [3] NIKOLINA K, SHENG L, KHAMIS E. Effect of the preparation techniques of photopolymerizable ceramic slurry and printing parameters on the accuracy of 3D printed lattice structures[J]. Journal of the European Ceramic Society, 2021, 41(15): 7734-7743. [4] RANE K, PETRÒ S, STRANO M. Evolution of porosity and geometrical quality through the ceramic extrusion additive manufacturing process stages[J]. Additive Manufacturing, 2020, 32: 101038. [5] 冯江涛, 夏 风, 肖建中. 陶瓷注射成型技术及其新进展[J]. 中国陶瓷, 2003, 39(2): 34-38. FENG J T, XIA F, XIAO J Z. Ceramic inj ection molding and its development[J]. China Ceramics, 2003, 39(2): 34-38 (in Chinese). [6] KRYACHEK V M. Injection moulding (review)[J]. Powder Metallurgy and Metal Ceramics, 2004, 43(7): 336-348. [7] SUN J X, BINNER J, BAI J M. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process[J]. Journal of the European Ceramic Society, 2020, 40(15): 5837-5844. [8] TRAVITZKY N, BONET A, DERMEIK B, et al. Additive manufacturing of ceramic-based materials[J]. Advanced Engineering Materials, 2014, 16(6): 729-754. [9] WU X Q, TENG J C, JI X X, et al. Research progress of the defects and innovations of ceramic vat photopolymerization[J]. Additive Manufacturing, 2023, 65: 103441. [10] ZHANG K Q, MENG Q Y, QU Z L, et al. A review of defects in vat photopolymerization additive-manufactured ceramics: characterization, control, and challenges[J]. Journal of the European Ceramic Society, 2024, 44(3): 1361-1384. [11] HOFER A K, RABITSCH J, JUTRZENKA-TRZEBIATOWSKA D, et al. Effect of binder system on the thermophysical properties of 3D-printed zirconia ceramics[J]. International Journal of Applied Ceramic Technology, 2022, 19(1): 174-180. [12] ZAKERI S, VIPPOLA M, LEVÄNEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35: 101177. [13] TAN L J, ZHU W, ZHOU K. Recent progress on polymer materials for additive manufacturing[J]. Advanced Functional Materials, 2020, 30(43): 2003062. [14] LIM I Y, TING C H, NG C K, et al. 3D printing of high solid loading zirconia feedstock via screw-based material extrusion[J]. Ceramics International, 2023, 49(15): 24852-24860. [15] HE Q L, JIANG J, YANG X F, et al. Additive manufacturing of dense zirconia ceramics by fused deposition modeling via screw extrusion[J]. Journal of the European Ceramic Society, 2021, 41(1): 1033-1040. [16] SARRAF F, HADIAN A, CHURAKOV S V, et al. EVA-PVA binder system for polymer derived mullite made by material extrusion based additive manufacturing[J]. Journal of the European Ceramic Society, 2023, 43(2): 530-541. [17] LI S, LI Y F, WANG Q W, et al. Fabrication of 3D-SiC/aluminum alloy interpenetrating composites by DIW and pressureless infiltration[J]. Ceramics International, 2021, 47(17): 24340-24347. [18] 李西敏, 杨 韬, 彭必友, 等. 二氧化钛陶瓷浆料的制备及其直写成型3D打印[J]. 复合材料学报, 2022, 39(7): 3510-3517. LI X M, YANG T, PENG B Y, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3510-3517 (in Chinese). [19] 吴洋洋, 罗永皓, 伍尚华, 等. 基于DIW工艺的ZrO2/PDMS复合陶瓷材料可打印性能研究[J]. 材料导报, 2023, 37(S1): 123-130. WU Y Y, LUO Y H, WU S H, et al. Study on printability of ZrO2/PDMS composite ceramics based on DIW process[J]. Materials Reports, 2023, 37(S1): 123-130 (in Chinese). [20] LI H, ZHANG H, CHANG A, et al. A novel core-shell structure NTC ceramic with high stability fabricating by an in-situ ink-jet printing method[J]. Journal of the European Ceramic Society, 2021, 41(7): 4167-4174. [21] LEE J H, KWEON J W, CHO W S, et al. Formulation and characterization of black ceramic ink for a digital ink-jet printing[J]. Ceramics International, 2018, 44(12): 14151-14157. [22] QIN W, WANG K, ZHANG Y. Preparation of submicron CdSxSe1-x@ZrSiO4 inclusion pigment and its application in ink-jet printing[J]. Journal of the European Ceramic Society, 2021, 41(15): 7878-7885. [23] PAN Z, WANG Y, HUANG H, et al. Recent development on preparation of ceramic inks in ink-jet printing[J]. Ceramics International, 2015, 41(10, Part A): 12515-12528. [24] FIELDING G A, BANDYOPADHYAY A, BOSE S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials: Official Publication of the Academy of Dental Materials, 2012, 28(2): 113-122. [25] NAN B Y, YIN X W, ZHANG L T, et al. Three-dimensional printing of Ti3SiC2-based ceramics[J]. Journal of the American Ceramic Society, 2011, 94(4): 969-972. [26] SHAHZAD K, DECKERS J, KRUTH J P, et al. Additive manufacturing of alumina parts by indirect selective laser sintering and post processing[J]. Journal of Materials Processing Technology, 2013, 213(9): 1484-1494. [27] LU D C, CHENG S, ZHANG L W, et al. Effect of holding time on SiC whiskers growth of SiCw/SiC composites based on SLS technology and their mechanical properties[J]. Ceramics International, 2022, 48(22): 33019-33027. [28] KHAZAALAH T H, MUSTAFA I S, ALORAINI D A, et al. Investigation of optical properties and radioactive attenuation parameters of doped tungsten oxide soda lime silica SLS waste glass[J]. Journal of Materials Research and Technology, 2022, 19: 3355-3365. [29] LU D C, ZHANG L W, CHENG S, et al. Microstructure control of SiCw/SiC composites based on SLS technology[J]. Journal of the European Ceramic Society, 2022, 42(9): 3747-3758. [30] DENG K X, WU H H, LI Y, et al. Porous NFG/SiCnw composites fabricated by SLS for structural load-bearing and functionally integrated electromagnetic absorption[J]. Ceramics International, 2023, 49(17): 28547-28559. [31] LEI J C, ZHANG Q R, WANG Y H, et al. Direct laser melting of Al2O3 ceramic paste for application in ceramic additive manufacturing[J]. Ceramics International, 2022, 48(10): 14273-14280. [32] SU H, JIANG H, ZHANG Z, et al. Microstructure and mechanical properties of ZrB2-SiC eutectic composite ceramic fabricated by laser surface zone-melting: the effect of laser power and scanning speed[J]. Journal of the European Ceramic Society, 2023, 43(14): 5822-5829. [33] 衣惠君, 汤 明, 张清怡, 等. 3D打印用光固化树脂产品性能研究[J]. 中国塑料, 2022, 36(5): 43-46. YI H J, TANG M, ZHANG Q Y, et al. Study on properties of light-cured resin products for 3D printing[J]. China Plastics, 2022, 36(5): 43-46 (in Chinese). [34] DING G J, HE R J, ZHANG K Q, et al. Dispersion and stability of SiC ceramic slurry for stereolithography[J]. Ceramics International, 2020, 46(4): 4720-4729. [35] XU X H, ZHOU S X, WU J F, et al. Relationship between the adhesion properties of UV-curable alumina suspensions and the functionalities and structures of UV-curable acrylate monomers for DLP-based ceramic stereolithography[J]. Ceramics International, 2021, 47(23): 32699-32709. [36] LIU S, MO L N, BI G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry[J]. Ceramics International, 2021, 47(15): 21108-21116. [37] WANG H H, HUANG Z Y, LI J, et al. DLP 3D printing of high-performance epoxy resin via dual curing[C]//2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). Guangzhou, China. IEEE, 2021: 1172-1176. [38] SANTOLIQUIDO O, CAMEROTA F, ORTONA A. The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components[J]. Open Ceramics, 2021, 5: 100059. [39] 周士翔. 基于DLP光固化3D打印的高性能氧化铝基陶瓷及其致密化研究[D]. 武汉: 武汉理工大学, 2022: 1-20. ZHOU S X. High-performance alumina-based ceramics and densification study based DLP stereolithography 3D printing[D]. Wuhan: Wuhan University of Technology, 2022: 1-20 (in Chinese). [40] KRONGAUZ V V. Crosslink density dependence of polymer degradation kinetics: photocrosslinked acrylates[J]. Thermochimica Acta, 2010, 503: 70-84. [41] LEWIS J A. Binder removal from ceramics[J]. Annual Review of Materials Science, 1997, 27: 147-173. [42] ZHANG D W, PENG E, BORAYEK R, et al. Controllable ceramic green-body configuration for complex ceramic architectures with fine features[J]. Advanced Functional Materials, 2019, 29(12): 1807082. [43] KIM J, GAL C W, CHOI Y J, et al. Effect of non-reactive diluent on defect-free debinding process of 3D printed ceramics[J]. Additive Manufacturing, 2023, 67: 103475. [44] WANG K, QIU M B, JIAO C, et al. Study on defect-free debinding green body of ceramic formed by DLP technology[J]. Ceramics International, 2020, 46(2): 2438-2446. [45] MICLETTE O, CÔTÉ R, DEMERS V, et al. Material extrusion additive manufacturing of low-viscosity metallic feedstocks: performances of the plunger-based approach[J]. Additive Manufacturing, 2022, 60: 103252. [46] MCNULTY T F, MOHAMMADI F, BANDYOPADHYAY A, et al. Development of a binder formulation for fused deposition of ceramics[J]. Rapid Prototyping Journal, 1998, 4(4): 144-150. [47] JAFARI M A, HAN W, MOHAMMADI F, et al. A novel system for fused deposition of advanced multiple ceramics[J]. Rapid Prototyping Journal, 2000, 6(3): 161-175. [48] CLEMENS F, SCHULZ J, GORJAN L, et al. Debinding and sintering of dense ceramic structures made with fused deposition modeling[M]//Industrializing Additive Manufacturing. Cham: Springer International Publishing, 2020: 293-303. [49] WAGNER M A, HADIAN A, SEBASTIAN T, et al. Fused filament fabrication of stainless steel structure: from binder development to sintered properties[J]. Additive Manufacturing, 2022, 49: 102472. [50] LIU D M, TSENG W J. Binder removal from injection moulded zirconia ceramics[J]. Ceramics International, 1999, 25(6): 529-534. [51] LI J, ZHANG C F, YIN R M, et al. Thermal debinding behavior of a low-toxic DMAA polymer for gelcast ceramic parts based on TG-FTIR and kinetic modeling[J]. RSC Advances, 2019, 9(15): 8415-8425. [52] XIE H H, JIANG J, YANG X F, et al. Theory and practice of rapid and safe thermal debinding in ceramic injection molding[J]. International Journal of Applied Ceramic Technology, 2020, 17(3): 1098-1107. [53] ZHANG L, HUANG J Y, XIAO Z H, et al. Effects of debinding condition on microstructure and densification of alumina ceramics shaped with photopolymerization-based additive manufacturing technology[J]. Ceramics International, 2022, 48(10): 14026-14038. [54] CUI M M, WANG T, ZHAO Y, et al. Research on crack mechanism and kinetic model of alumina ceramic in the degreasing stage based on stereolithography[J]. International Journal of Applied Ceramic Technology, 2023, 20(6): 3419-3435. [55] YAN X K, WANG C, XIONG W, et al. Thermal debinding mass transfer mechanism and dynamics of copper green parts fabricated by an innovative 3D printing method[J]. RSC Advances, 2018, 8(19): 10355-10360. [56] SALEHI M, CLEMENS F, GRAULE T, et al. Kinetic analysis of the polymer burnout in ceramic thermoplastic processing of the YSZ thin electrolyte structures using model free method[J]. Applied energy, 2012, 95: 147-155. [57] SHI Z, GUO Z X, SONG J H. A diffusion-controlled kinetic model for binder burnout in a powder compact[J]. Acta Materialia, 2002, 50(8): 1937-1950. [58] CHEN Q H, ZOU B, LAI Q G, et al. A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98: 327-335. [59] BOLGER J C. Acid base interactions between oxide surfaces and polar organic compounds[M]//Adhesion Aspects of Polymeric Coatings. Boston, MA: Springer US, 1983: 3-18. [60] 吴 盾, 秦 帅, 刘春林, 等. 硬脂酸表面改性对PLZT压电陶瓷粉末注射成型性能的影响[J]. 无机材料学报, 2019, 34(5): 535-540. WU D, QIN S, LIU C L, et al. Surface modification by stearic acid on property of PLZT piezoelectric ceramics prepared via powder injection molding[J]. Journal of Inorganic Materials, 2019, 34(5): 535-540 (in Chinese). [61] 杨现锋, 谢志鹏, 黄 勇. 氧化锆粉体表面改性及其注射成型水脱脂研究[J]. 稀有金属材料与工程, 2009, 38(增刊1): 432-436. YANG X F, XIE Z P, HUANG Y. Study on surface modification of zirconia powder and its water degreasing in injection molding[J]. Rare Metal Materials and Engineering, 2009, 38(supplement 1): 432-436 (in Chinese). [62] HOWARD K E, LAKEMAN C D E, PAYNE D A. Surface chemistry of various poly(vinyl butyral) polymers adsorbed onto alumina[J]. Journal of the American Ceramic Society, 1990, 73(8): 2543-2546. [63] HRDINA K E, HALLORAN J W, OLIVEIRA A, et al. Chemistry of removal of ethylene vinyl acetate binders[J]. Journal of Materials Science, 1998, 33(11): 2795-2803. [64] KNAPP A M, HALLORAN J W. Binder removal from ceramic-filled thermoplastic blends[J]. Journal of the American Ceramic Society, 2006, 89(9): 2776-2781. [65] ZUBRZYCKA P, RADECKA M, GRAULE T, et al. Debinding of additively manufactured parts from spinel powders with particle sizes below 200nm[J]. Ceramics International, 2023, 49(7): 11355-11367. [66] LI Y M, JIANG F, ZHAO L G, et al. Critical thickness in binder removal process for injection molded compacts[J]. Materials Science and Engineering: A, 2003, 362(1/2): 292-299. [67] GENTRY S P, HALLORAN J W. Depth and width of cured lines in photopolymerizable ceramic suspensions[J]. Journal of the European Ceramic Society, 2013, 33(10): 1981-1988. [68] AGGARWAL G, PARK S J, SMID I, et al. Master decomposition curve for binders used in powder injection molding[J]. Metallurgical and Materials Transactions A, 2007, 38(3): 606-614. [69] SHEN Y R, SUN Y, JIN B C, et al. Effect of debinding and sintering profile on the optical properties of DLP-3D printed YAG transparent ceramic[J]. Ceramics International, 2022, 48(15): 21134-21140. [70] LI H, LIU Y S, LIU Y S, et al. Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics[J]. Materials Characterization, 2020, 168: 110548. [71] LI H, LIU Y S, LIU Y S, et al. Microstructure and properties of 3D-printed alumina ceramics with different heating rates in vacuum debinding[J]. Rare Metals, 2020, 39(5): 577-588. [72] ZHOU M P, LIU W, WU H D, et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography-optimization of the drying and debinding processes[J]. Ceramics International, 2016, 42(10): 11598-11602. [73] 谢志鹏, 杨金龙, 黄 勇, 等. 陶瓷注射成型脱脂过程研究[J]. 硅酸盐通报, 1998, 17(2): 4. XIE Z P, YANG J L, HUANG Y, et al. Study on degreasing process of ceramic injection molding[J]. Bulletin of the Chinese Ceramic Society, 1998, 17(2): 4 (in Chinese). [74] MCALEER E G, ALAZZAWI M K, HWANG C, et al. Binder removal from ceramic stereolithography green bodies: a neutron imaging and thermal analysis study[J]. Journal of the American Ceramic Society, 2023, 106(7): 4399-4410. [75] LI H, LIU Y S, LIU Y S, et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores[J]. Ceramics International, 2021, 47(4): 4884-4894. [76] PRIEL Z, SILBERBERG A. The thickness of adsorbed polymer layers at a liquid-solid interface as a function of bulk concentration[J]. Journal of Polymer Science: Polymer Physics Edition, 1978, 16(11): 1917-1925. [77] KIM I, KIM S, ANDREU A, et al. Influence of dispersant concentration toward enhancing printing precision and surface quality of vat photopolymerization 3D printed ceramics[J]. Additive Manufacturing, 2022, 52: 102659. [78] HAN Z Q, LIU S H, QIU K, et al. The enhanced ZrO2 produced by DLP via a reliable plasticizer and its dental application[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105751. [79] CIMA M J, LEWIS J A, DEVOE A D. Binder distribution in ceramic greenware during thermolysis[J]. Journal of the American Ceramic Society, 1989, 72(7): 1192-1199. [80] BAE C J, HALLORAN J W. Influence of residual monomer on cracking in ceramics fabricated by stereolithography[J]. International Journal of Applied Ceramic Technology, 2011, 8(6): 1289-1295. [81] YIN Y H, WANG J, HUANG Q Q, et al. Influence of debinding parameter and nano-ZrO2 particles on the silica-based ceramic cores fabricated by stereolithography-based additive manufacturing[J]. Ceramics International, 2023, 49(12): 20878-20889. [82] GERMAN R M. Theory of thermal debinding[J]. International Journal of Powder Metallurgy, 1987, 23: 237-245. [83] ANGERMANN H H, YANG F K, VAN DER BIEST O. Removal of low molecular weight components during thermal debinding of powder compacts[J]. Journal of Materials Science, 1992, 27(9): 2534-2538. [84] 李益民, 曲选辉, 黄伯云. 多聚合物组元石蜡基MIM粘结剂的热脱脂及其模型[J]. 金属学报, 1999, 35(2): 167-171. LI Y M, QU X H, HUANG B Y. Thermal debinding and model for the wax-based MIM binder of multi-polymer components[J]. Acta Metallrugica Sinica, 1999, 35(2): 167-171 (in Chinese). [85] LEWIS J A, GALLER M A, BENTZ D P. Computer simulations of binder removal from 2-D and 3-D model particulate bodies[J]. Journal of the American Ceramic Society, 1996, 79(5): 1377-1388. [86] GERMAN R M. Injection molding of metals and ceramics[J]. Powder Metallurgy, 1997, 42: 157-160. [87] WU H D, CHENG Y L, LIU W, et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography[J]. Ceramics International, 2016, 42(15): 17290-17294. [88] XING H Y, ZOU B, LIU X Y, et al. Effect of particle size distribution on the preparation of ZTA ceramic paste applying for stereolithography 3D printing[J]. Powder Technology, 2020, 359: 314-322. [89] MATAR S A, EVANS J R G, EDIRISINGHE M J, et al. The effect of porosity development on the removal of organic vehicle from ceramic or metal moldings[J]. Journal of Materials Research, 1993, 8(3): 617-625. [90] LI J, HUANG J D, YIN R M. Multistage kinetic analysis of DMAA/MBAM polymer removal from gelcast ceramic parts using a multi-stage parallel reaction model and model-free method[J]. RSC Advances, 2019, 9(47): 27305-27317. [91] KHOONG L E, LAM Y C, CHAI J C, et al. Modeling of mass transfers in a porous green compact with two-component binder during thermal debinding[J]. Chemical Engineering Science, 2009, 64(12): 2837-2850. [92] LI J, ZHANG C F, YIN R M, et al. DAEM kinetics analysis and finite element simulation of thermal debinding process for a gelcast SiAlON green body[J]. Ceramics International, 2019, 45(7): 8166-8174. [93] CHICONE C, LOMBARDO S J, RETZLOFF D G. Modeling, approximation, and time optimal temperature control for binder removal from ceramics[J]. Discrete & Continuous Dynamical Systems-B, 2022, 27(1): 103. [94] SONG J H, EVANS J R G, EDIRISINGHE M J, et al. Optimization of heating schedules in pyrolytic binder removal from ceramic moldings[J]. Journal of Materials Research, 2000, 15(2): 449-457. [95] LAM Y C, YU S C M, TAM K C, et al. Simulation of polymer removal from a powder injection molding compact by thermal debinding[J]. Metallurgical and Materials Transactions A, 2000, 31(10): 2597-2606. [96] GORJAN L, LUSIOLA T, SCHARF D, et al. Kinetics and equilibrium of eco-debinding of PZT ceramics shaped by thermoplastic extrusion[J]. Journal of the European Ceramic Society, 2017, 37(16): 5273-5280. [97] ESAN O J, HANSEN C J, PETERSON A M. Multiphysics and geometry-based modeling of incorporating mass transport networks in ceramic green bodies to improve thermal debinding[J]. Ceramics International, 2024, 50(6): 9789-9800. [98] ZHOU S X, LIU G Z, WANG C S, et al. Thermal debinding for stereolithography additive manufacturing of advanced ceramic parts: a comprehensive review[J]. Materials & Design, 2024, 238: 112632. [99] ENNETI R K, PARK S J, GERMAN R M, et al. Review: thermal debinding process in particulate materials processing[J]. Materials and Manufacturing Processes, 2012, 27(2): 103-118. [100] JOHANSSON E, LIDSTRÖM O, JOHANSSON J, et al. Influence of resin composition on the defect formation in alumina manufactured by stereolithography[J]. Materials, 2017, 10(2): 138. [101] NIU F R, YANG X L, LI Y B, et al. Fused deposition modeling of Si3N4 ceramics: a cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(15): 7369-7376. [102] XING H Y, ZOU B, LI S S, et al. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography[J]. Ceramics International, 2017, 43(18): 16340-16347. [103] LI H, LIU Y S, LIU Y S, et al. Influence of vacuum debinding temperature on microstructure and mechanical properties of three-dimensional-printed alumina via stereolithography[J]. 3D Printing and Additive Manufacturing, 2020, 7(1): 8-18. [104] SCHERER G W. Theory of drying[J]. Journal of the American Ceramic Society, 1990, 73(1): 3-14. [105] ZHANG K Q, MENG Q Y, ZHANG X Q, et al. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography[J]. Journal of Materials Science & Technology, 2022, 118: 144-157. [106] HSIANG H I, LEE C Y, CHEN C C, et al. Polycrystalline alumina ceramic fabrication using digital stereolithographic light process[J]. Ceramics International, 2021, 47(23): 33815-33826. [107] YANG S D, ZHANG R J, QU X H. X-ray tomographic analysis of powder-binder separation in SiC green body[J]. Journal of the European Ceramic Society, 2013, 33(15/16): 2935-2941. [108] LU P K, LANNUTTI J J. Effect of density gradients on dimensional tolerance during binder removal[J]. Journal of the American Ceramic Society, 2000, 83(10): 2536-2542. [109] STROBL M, MANKE I, KARDJILOV N, et al. Advances in neutron radiography and tomography[J]. Journal of Physics D: Applied Physics, 2009, 42(24): 243001. [110] ZHANG K Q, MENG Q Y, CAI N J, et al. Effects of solid loading on stereolithographic additive manufactured ZrO2 ceramic: a quantitative defect study by X-ray computed tomography[J]. Ceramics International, 2021, 47(17): 24353-24359. [111] ZHANG K, MENG Q, ZHANG X, et al. Roles of solid loading in stereolithography additive manufacturing of ZrO2 ceramic[J]. International Journal of Refractory Metals and Hard Materials, 2021, 99: 105604. [112] WANG X Y, DUAN W Y, CHEN Z H, et al. Uniform rate debinding for Si3N4 vat photopolymerization 3D printing green parts using a specific-stage stepwise heating process[J]. Additive Manufacturing, 2024, 84: 104119. [113] ORTEGA VARELA DE SEIJAS M, BARDENHAGEN A, PAMBAGUIAN L, et al. Laser debinding of parts produced through material extrusion additive manufacturing[J]. Journal of Manufacturing Processes, 2023, 88: 1-11. [114] CANILLAS M, JEAN F, THUAULT A, et al. Microwave-assisted debinding of Al2O3 parts printed by stereolithography[J]. Ceramics International, 2023, 49(11): 18343-18352. |
[1] | SUN Kaiqiang, LIU Lin, ZHENG Hongchen. Analysis of Influencing Factors on Mechanical Properties of Alkali- Activated Slag-Fly Ash Binder Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3313-3319. |
[2] | HAN Zheng, WANG Tao, LIU Zhiwei, NIE Yunpeng, WANG Xueting. Composite Slurry for Room-Temperature Extrusion 3D Printing HA/β-TCP/DCPA Bone Scaffold [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3472-3478. |
[3] | HE Juan, LIU Shuang, SONG Xuefeng, XU Shanhansu, LI Mengmeng. Adhesion Property of Mortar Prepared by Granite Tailing Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2565-2576. |
[4] | ZHOU Mingkai, RAO Ke, MENG Xiuyuan, WANG Yuqiang. Preparation and High-Strength Micro-Expansion Mechanism of CFB Fly Ash Compaction Slurry [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2157-2167. |
[5] | MAO Yufei, GUO Zenghui, CHEN Hui, ZHANG Jie, LUO Jianlin, LIU Chao, SHANG Huaishuai. Study Progress on Reinforcement Technology for 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1557-1568. |
[6] | YANG Chenqian, LIU Chao, CHEN Peng, LIU Kai. Current Research Status and Prospects of 3D Printing Glass Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1569-1587. |
[7] | ZHOU Qingxuan, WANG Yang, HAN Zhuoqun, ZHAO Zhicheng, CHU Wei, ZHAO Jie, LIU Jia, WANG Yingying, CHENG Zhiqiang, LI Ling, LIU Futian. Research Progress of Stereolithography 3D Printing of Silicon Nitride Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1588-1599. |
[8] | YANG Yan'an, LI He, MU Baoxia. Research Progress of Ceramic 3D Printing Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1600-1614. |
[9] | LI Fei, LU Ya, LI Weihan, XU Xiaoming, ZHOU Huajie, ZHANG Zheng, ZHOU Li'an. Study on Printability of Mortar for 3D Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1615-1622. |
[10] | PENG Shaobin, GUAN Xuemao. Research on Rheological Properties, Printability and Mechanical Properties of 3D Printing Coal Gangue Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1623-1632. |
[11] | MA Xiaoyao, JIAN Shouwei, LI Baodong, HUANG Jianxiang, GAO Xin, XUE Wenhao, WANG Caifeng. Effects of Different Inorganic Thickeners on Properties of 3D Printed Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1642-1650. |
[12] | ZHANG Zhaorui, LUO Surong, LIN Xin. Anisotropic of 3D Printed Cement-Based Materials Reinforced with Metakaolin and Limestone Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1651-1662. |
[13] | LI Nan, ZHONG Jianjun, DENG Yongjie, LIANG Yun, WAN Detian, LI Weihong, LI Dongwei. 3D Printing Performance of Metakaolin Modified Light Burnt Magnesia-Based Magnesium Phosphate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1663-1672. |
[14] | LIU Xiaojiang, LI Zhijian. Effect of Fly Ash on Water Resistance of Powder Bed 3D Printing Magnesium Phosphate Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1673-1682. |
[15] | WU Chunqun, HAN Kang, LI Denghui, YANG Huashan. Effect of Attapulgite Clay on Working Performance and Compressive Strength of 3D Printed Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1683-1693. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||