BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (10): 3655-3665.
• Solid Waste and Eco-Materials • Previous Articles Next Articles
HUANG Wei1,2, XUE Kui1, ZHANG Zilong1, CAO Yonggang1, WANG Jialiang1, QIU Wenhao3, CHEN Dongsheng3
Received:
2024-03-19
Revised:
2024-04-21
Online:
2024-10-15
Published:
2024-10-16
CLC Number:
HUANG Wei, XUE Kui, ZHANG Zilong, CAO Yonggang, WANG Jialiang, QIU Wenhao, CHEN Dongsheng. Research and Application Progress of Iron Tailings Sand[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3655-3665.
[1] 易龙生, 吴 倩, 米宏成, 等. 利用铁尾矿制备发泡水泥[J]. 非金属矿, 2021, 44(1): 1-4. YI L S, WU Q, MI H C, et al. Preparation of foamed cement using iron tailings[J]. Non-Metallic Mines, 2021, 44(1): 1-4 (in Chinese). [2] 易龙生, 李 行, 齐莉娜, 等. 铁尾矿用于路面基层材料的研究进展及前景[J]. 矿业研究与开发, 2015, 35(10): 27-32. YI L S, LI H, QI L N, et al. Research progress and application prospect of iron tailings for pavement base material[J]. Mining Research and Development, 2015, 35(10): 27-32 (in Chinese). [3] 刘志强, 郝梓国, 刘 恋, 等. 我国尾矿综合利用研究现状及建议[J]. 地质论评, 2016, 62(5): 1277-1282. LIU Z Q, HAO Z G, LIU L, et al. Status of the comprehensive utilization of tailings in China and suggestions[J]. Geological Review, 2016, 62(5): 1277-1282 (in Chinese). [4] KUMAR S, KUMAR R, BANDOPADHYAY A. Innovative methodologies for the utilisation of wastes from metallurgical and allied industries[J]. Resources, Conservation and Recycling, 2006, 48(4): 301-314. [5] 祝 波, 蒋晓丽, 毛益林, 等. 四川拉拉铜矿尾矿中的铜钴金等有价元素资源及其综合利用[J]. 矿产综合利用, 2023(5): 142-147. ZHU B, JIANG X L, MAO Y L, et al. Valuable element resources and comprehensive utilization in the tailings of lala copper mine, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2023(5): 142-147 (in Chinese). [6] CHU C F, DENG Y F, ZHOU A N, et al. Backfilling performance of mixtures of dredged river sediment and iron tailing slag stabilized by calcium carbide slag in mine goaf[J]. Construction and Building Materials, 2018, 189: 849-856. [7] LI C, SUN H H, BAI J, et al. Innovative methodology for comprehensive utilization of iron ore tailings[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 71-77. [8] 张淑会, 薛向欣, 金在峰. 我国铁尾矿的资源现状及其综合利用[J]. 材料与冶金学报, 2004, 3(4): 241-245. ZHANG S H, XUE X X, JIN Z F. Current situation and comprehensive utilization of iron ore tailings resources in our country[J]. Journal of Materials and Metallurgy, 2004, 3(4): 241-245 (in Chinese). [9] WEI Z Y, JIA Y S, WANG S Q, et al. Influence of iron tailing filler on rheological behavior of asphalt mastic[J]. Construction and Building Materials, 2022, 352: 129047. [10] XU F, WANG S L, LI T, et al. Mechanical properties and pore structure of recycled aggregate concrete made with iron ore tailings and polypropylene fibers[J]. Journal of Building Engineering, 2021, 33: 101572. [11] 张迎棋. 我国铁矿石选矿工艺与设备综述[J]. 现代矿业, 2023, 39(2): 19-22. ZHANG Y Q. Review on iron ore processing technology and equipment in China[J]. Modern Mining, 2023, 39(2): 19-22 (in Chinese). [12] 刘洪江. 铁矿选矿工艺现状与发展之我见[J]. 世界有色金属, 2017(1): 212-214. LIU H J. Present situation and development of iron ore dressing technology[J]. World Nonferrous Metals, 2017(1): 212-214 (in Chinese). [13] 韩跃新, 张小龙, 高 鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2024(2): 1-24. HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2024(2): 1-24 (in Chinese). [14] SUN Y S, ZHANG X L, HAN Y X, et al. A new approach for recovering iron from iron ore tailings using suspension magnetization roasting: a pilot-scale study[J]. Powder Technology, 2020, 361: 571-580. [15] LI Y J, ZHANG Q, YUAN S, et al. High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation[J]. Powder Technology, 2021, 379: 466-477. [16] YIN W Z, TANG Y. Interactive effect of minerals on complex ore flotation: a brief review[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 571-583. [17] ZHAO J S, NI K, SU Y P, et al. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties[J]. Construction and Building Materials, 2021, 286: 122968. [18] FONTES W C, MENDES J C, DA SILVA S N, et al. Mortars for laying and coating produced with iron ore tailings from tailing dams[J]. Construction and Building Materials, 2016, 112: 988-995. [19] BANGALORE CHINNAPPA G, KARRA R C. Experimental and statistical evaluations of strength properties of concrete with iron ore tailings as fine aggregate[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24(1): 04019038. [20] UGAMA T, EJEH S, AMARTEY D. Effect of iron ore tailing on the properties of concrete[J]. Civil and Environmental Research, 2014, 6: 7-13. [21] SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016, 120: 72-79. [22] LV X D, SHEN W G, WANG L, et al. A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation[J]. Journal of Cleaner Production, 2019, 211: 704-715. [23] DUAN P, YAN C J, ZHOU W, et al. Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle[J]. Construction and Building Materials, 2016, 118: 76-88. [24] YANG C M, CUI C, QIN J, et al. Characteristics of the fired bricks with low-silicon iron tailings[J]. Construction and Building Materials, 2014, 70: 36-42. [25] 陈秀云. 铁尾矿砂绿色混凝土构件受力性能试验研究[D]. 武汉: 武汉理工大学, 2017. CHEN X Y. Experimental study on the mechanical properties of the tailing sand green concrete members[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese). [26] LI X G, BAO Y L, JING S S, et al. Properties of sand grout with iron ore tailings as fine aggregate[J]. Applied Mechanics and Materials, 2013, 405/406/407/408: 2851-2856. [27] CHENG Y H, HUANG F, LI W C, et al. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete[J]. Construction and Building Materials, 2016, 118: 164-170. [28] LI C, SUN H H, YI Z L, et al. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: the residues after iron recovery from iron ore tailings to prepare cementitious material[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 78-83. [29] YAO R, LIAO S Y, DAI C L, et al. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings[J]. Journal of Magnetism and Magnetic Materials, 2015, 378: 367-375. [30] 储诚富, 王雨航, 宗文强. 团聚体级配对固废改良膨胀土耐久性的影响[J]. 建筑材料学报, 2024, 27(3): 237-244. CHU C F, WANG Y H, ZONG W Q. Effect of aggregate grading on durability of expansive soil modified by solid waste[J]. Journal of Building Materials, 2024, 27(3): 237-244 (in Chinese). [31] 高 敏. 铁尾矿制备矿物掺合料和再生集料的关键技术研究[D]. 南京: 东南大学, 2021. GAO M. Research on the key technology of preparing mineral admixture and recycled aggregate from iron tailings[D]. Nanjing: Southeast university, 2021 (in Chinese). [32] 顾晓薇, 徐建宇, 贾泽藩, 等. 极细高硅型铁尾矿制备超高性能混凝土研究[J]. 金属矿山, 2022(1): 71-75. GU X W, XU J Y, JIA Z F, et al. The study on preparation of ultra-high performance concrete utilizing ultra-fine silicon iron tailings[J]. Metal Mine, 2022(1): 71-75 (in Chinese). [33] 王 营, 顾晓薇, 张延年, 等. 铁尾矿砂水泥砂浆抗压强度及微观结构分析[J]. 金属矿山, 2022(1): 60-64. WANG Y, GU X W, ZHANG Y N, et al. Analysis of compressive strength and microstructure of iron tailings sand cement mortar[J]. Metal Mine, 2022(1): 60-64 (in Chinese). [34] 蔡基伟, 封孝信, 赵 丽, 等. 铁尾矿砂混凝土的泌水特性[J]. 武汉理工大学学报, 2009, 31(7): 88-91. CAI J W, FENG X X, ZHAO L, et al. Bleeding behavior of concrete prepared with ferrous mill tailings as manufactured fine aggregates[J]. Journal of Wuhan University of Technology, 2009, 31(7): 88-91 (in Chinese). [35] HU D, GUO Z, WANG Z, et al. Metabolism analysis and eco-environmental impact assessment of two typical cement production systems in Chinese enterprises[J]. Ecological Informatics, 2015, 26: 70-77. [36] CARRASCO E V M, MAGALHAES M D C, SANTOS W J D, et al. Characterization of mortars with iron ore tailings using destructive and nondestructive tests[J]. Construction and Building Materials, 2017, 131: 31-38. [37] HAN F H, LI L, SONG S, et al. Early-age hydration characteristics of composite binder containing iron tailing powder[J]. Powder Technology, 2017, 315: 322-331. [38] KORKMAZ A V. Mechanical activation of diabase and its effect on the properties and microstructure of Portland cement[J]. Case Studies in Construction Materials, 2022, 16: e00868. [39] YANG M J, SUN J H, DUN C Y, et al. Cementitious activity optimization studies of iron tailings powder as a concrete admixture[J]. Construction and Building Materials, 2020, 265: 120760. [40] XU A M, SARKAR S L. Microstructural study of gypsum activated fly ash hydration in cement paste[J]. Cement and Concrete Research, 1991, 21(6): 1137-1147. [41] 冯向鹏, 孙恒虎, 张 娜, 等. 铁尾矿活性优化机理研究[J]. 矿业快报, 2007, 23(6): 21-24. FENG X P, SUN H H, ZHANG N, et al. Study of activity optimization mechanism of iron ore tailing[J]. Express Information of Mining Industry, 2007, 23(6): 21-24 (in Chinese). [42] OJO E B, MUSTAPHA K, TEIXEIRA R S, et al. Development of unfired earthen building materials using muscovite rich soils and alkali activators[J]. Case Studies in Construction Materials, 2019, 11: e00262. [43] YANG Y C, YANG Z L, CHENG Z X, et al. Effects of wet grinding combined with chemical activation on the activity of iron tailings powder[J]. Case Studies in Construction Materials, 2022, 17: e01385. [44] 顾晓薇, 殷士奇, 张伟峰, 等. 铁尾矿砂多元化替代方式对混凝土抗压强度影响研究[J]. 矿业研究与开发, 2021, 41(12): 104-108. GU X W, YIN S Q, ZHANG W F, et al. Study on influence of diversified alternative method of iron tailings sand on compressive strength of concrete[J]. Mining Research and Development, 2021, 41(12): 104-108 (in Chinese). [45] ZHANG W F, GU X W, QIU J P, et al. Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete[J]. Construction and Building Materials, 2020, 260: 119917. [46] HUANG X Y, RANADE R, NI W, et al. Development of green engineered cementitious composites using iron ore tailings as aggregates[J]. Construction and Building Materials, 2013, 44: 757-764. [47] XIONG C S, LI W H, JIANG L H, et al. Use of grounded iron ore tailings (GIOTs) and BaCO3 to improve sulfate resistance of pastes[J]. Construction and Building Materials, 2017, 150: 66-76. [48] PAILLERE A M, BUIL M, SERRANO J J. Effect of fiber addition on the autogenous shrinkage of silica fume[J]. ACI Materials Journal, 1989, 86(2): 139-144. [49] 尹韶宁. 铁尾矿砂混凝土收缩开裂性能研究[D]. 重庆: 重庆大学, 2019. YIN S N. Research on shrinkage and cracking properties of iron tailing sand concrete[D]. Chongqing: Chongqing University, 2019 (in Chinese). [50] 曾雅钰琼, 潘建平, 杨秀英, 等. 铁尾矿在道路基层材料中的应用研究进展[J]. 应用化工, 2018, 47(2): 358-364. ZENG Y Y Q, PAN J P, YANG X Y, et al. Application of iron tailings in road base materials[J]. Applied Chemical Industry, 2018, 47(2): 358-364 (in Chinese). [51] 马怀森, 阙 云, 丁 峰, 等. 改良铁尾矿砂在高速公路路基中的应用研究[J]. 交通科技, 2022(5): 25-29. MA H S, QUE Y, DING F, et al. Study on the application of improved iron tailings sand in highway subgrade[J]. Transportation Science & Technology, 2022(5): 25-29 (in Chinese). [52] ULLAH S, YANG C, CAO L P, et al. Material design and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings[J]. Construction and Building Materials, 2021, 303: 124446. [53] JIANG P, CHEN Y W, WANG W S, et al. Flexural behavior evaluation and energy dissipation mechanisms of modified iron tailings powder incorporating cement and fibers subjected to freeze-thaw cycles[J]. Journal of Cleaner Production, 2022, 351: 131527. [54] 代 聪, 孙恩永, 周荣征, 等. 铁尾矿砂沥青混合料的高温性能[J]. 中国科技论文, 2022, 17(8): 837-843. DAI C, SUN E Y, ZHOU R Z, et al. High-temperature performance of iron tailings asphalt mixture[J]. China Sciencepaper, 2022, 17(8): 837-843 (in Chinese). [55] WEI Z Y, JIA Y S, WANG S Q, et al. Utilization of iron ore tailing as an alternative mineral filler in asphalt mastic: high-temperature performance and environmental aspects[J]. Journal of Cleaner Production, 2022, 335: 130318. [56] 李军卫, 刘长明, 单雪峰. 水泥改良铁尾矿砂路基填料的力学特性[J]. 矿产综合利用, 2021(3): 193-199. LI J W, LIU C M, SHAN X F. Research on mechanical properties of cement-improved iron tailings sand roadbed filler[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 193-199 (in Chinese). [57] 万 磊, 张 智, 宋华松, 等. 干湿循环对碱激发材料固化细铁尾矿砂强度特性的影响分析[J]. 硅酸盐通报, 2020, 39(7): 2223-2231. WAN L, ZHANG Z, SONG H S, et al. Effect of drying and wetting cycles on strength characteristic of alkali-activated materials solidified fine iron tailings sand[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2223-2231 (in Chinese). [58] PEIXOTO F, ANDER R, SILVA G C, et al. Using iron ore tailings from tailing dams as road material[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016102. [59] THEJAS H K, HOSSINEY N. Compressed unfired blocks made with iron ore tailings and slag[J]. Cogent Engineering, 2022, 9(1): 2032975. [60] MYMRIN V, PEDROSO D E, PEDROSO C L, et al. Physical-chemical processes of sustainable construction materials structure formation with iron ore processing tailings and aluminum anodizing sludge[J]. Construction and Building Materials, 2021, 298: 123698. [61] 张全宏, 刘理根, 裴业虎, 等. 选铁尾矿蒸压灰砂砖试验研究[J]. 新型建筑材料, 2011, 38(9): 51-53+78. ZHANG Q H, LIU L G, PEI Y H, et al. Experimental study on making autoclaved lime-sand brick using iron tailings[J]. New Building Materials, 2011, 38(9): 51-53+78 (in Chinese). [62] ZHAO Y L, ZHANG Y M, CHEN T J, et al. Preparation of high strength autoclaved bricks from hematite tailings[J]. Construction and Building Materials, 2012, 28(1): 450-455. [63] LI W S, LEI G Y, XU Y, et al. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings[J]. Journal of Cleaner Production, 2018, 204: 685-692. [64] HABERT G, D’ESPINOSE DE LACAILLERIE J B, ROUSSEL N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends[J]. Journal of Cleaner Production, 2011, 19(11): 1229-1238. [65] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. Journal of Cleaner Production, 2011, 19(9/10): 1080-1090. [66] 杨 征. 地质聚合物应用现状及前景展望[J]. 当代化工, 2017, 46(7): 1476-1478. YANG Z. Application status and prospect of geopolymers[J]. Contemporary Chemical Industry, 2017, 46(7): 1476-1478 (in Chinese). [67] 王梦婵, 张惠灵, 陈永亮, 等. 利用低硅铁尾矿制备地质聚合物的研究[J]. 中国矿业, 2019, 28(8): 170-176. WANG M C, ZHANG H L, CHEN Y L, et al. Utilization of low-silicon iron tailings for the preparation of geopolymers[J]. China Mining Magazine, 2019, 28(8): 170-176 (in Chinese). [68] FIGUEIREDO R A M, SILVEIRA A B M, MELO E L P, et al. Mechanical and chemical analysis of one-part geopolymers synthesised with iron ore tailings from Brazil[J]. Journal of Materials Research and Technology, 2021, 14: 2650-2657. [69] RASHAD A M, ZEEDAN S R. A preliminary study of blended pastes of cement and quartz powder under the effect of elevated temperature[J]. Construction and Building Materials, 2012, 29: 672-681. [70] MULLER A C A, SCRIVENER K L, SKIBSTED J, et al. Influence of silica fume on the microstructure of cement pastes: new insights from 1H NMR relaxometry[J]. Cement and Concrete Research, 2015, 74: 116-125. [71] 程金树. 微晶玻璃[M]. 北京: 化学工业出版社, 2006: 24. CHENG J S. Microcrystalline glass[M]. Beijing: Chemical Industry Press, 2006: 24 (in Chinese). [72] 魏瑞丽, 张 婕. 铁尾矿资源化利用研究进展[J]. 矿业工程, 2014, 12(1): 56-59. WEI R L, ZHANG J. Research progress of utilization of iron ore tailings as resources[J]. Mining Engineering, 2014, 12(1): 56-59 (in Chinese). [73] YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass-ceramics derived from iron-rich copper slag[J]. Journal of Alloys and Compounds, 2013, 574: 354-360. [74] 张锦瑞, 倪 文, 王亚利. 利用铁尾矿制取微晶玻璃的研究[J]. 金属矿山, 2005(11): 72-74. ZHANG J R, NI W, WANG Y L. Research on producing glass ceramics by iron tailings[J]. Metal Mine, 2005(11): 72-74 (in Chinese). [75] REN X Z, ZHANG W, ZHANG Y, et al. Effects of Fe2O3 content on microstructure and mechanical properties of CaO-Al2O3-SiO2 system[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 137-145. [76] 王彬宇, 李 莉, 李 菁, 等. 用工业固体废料合成沸石分子筛的研究进展[J]. 高等学校化学学报, 2021, 42(1): 40-59. WANG B Y, LI L, LI J, et al. Recent progresses on the synthesis of zeolites from the industrial solid wastes[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 40-59 (in Chinese). [77] 顾晓薇, 艾莹莹, 孙 维, 等. 铁尾矿资源化利用现状[J]. 中国有色金属学报, 2022, (1): 1-29. GU X W, AI Y Y, SUN W, et al. Present situation of resource utilization of iron tailings[J]. Transactions of Nonferrous Metals Society of China, 2022, (1): 1-29 (in Chinese). [78] LU C, YANG H M, WANG J, et al. Utilization of iron tailings to prepare high-surface area mesoporous silica materials[J]. The Science of the Total Environment, 2020, 736: 139483. [79] QIU J P, YANG L, SUN X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill[J]. Minerals, 2017, 7(4): 58. [80] AMARASINGHE P M, KATTI K S, KATTI D R. Insight into role of clay-fluid molecular interactions on permeability and consolidation behavior of Na-montmorillonite swelling clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(2): 138-146. [81] 黎 伟, 刘观仕, 汪为巍, 等. 湿干循环下压实膨胀土裂隙扩展规律研究[J]. 岩土工程学报, 2014, 36(7): 1302-1308. LI W, LIU G S, WANG W W, et al. Crack propagation law of compacted expansive soils under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1302-1308 (in Chinese). [82] 傅乃强, 徐洪钟, 张苏俊. 纤维粉煤灰改良膨胀土无侧限抗压强度试验[J]. 南京工业大学学报(自然科学版), 2018, 40(1): 133-137. FU N Q, XU H Z, ZHANG S J. Unconfined compressive strength test on expansive soil reinforced with fiber and fly ash[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(1): 133-137 (in Chinese). [83] 郭坤龙, 储诚富, 叶 浩, 等. 铁尾矿砂-电石渣复合改良膨胀土的直剪试验研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1263-1268. GUO K L, CHU C F, YE H, et al. Study on direct shear strength of expansive soils improved by iron tailing sands and calcium carbide slag[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(9): 1263-1268 (in Chinese). [84] CHU C F, ZHANG F, WU D X, et al. Study on mechanical properties of the expansive soil treated with iron tailings sand[J]. Advances in Civil Engineering, 2021, 2021: 9944845. |
[1] | SUN Kaiqiang, LIU Lin, ZHENG Hongchen. Analysis of Influencing Factors on Mechanical Properties of Alkali- Activated Slag-Fly Ash Binder Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3313-3319. |
[2] | FAN Xiaochun, YANG Dongsheng, ZHANG Yu, GAO Xu, YU Liju. Influences of Additives on Alkali-Activated Cementitious Materials Drying Shrinkage Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2788-2796. |
[3] | ZHANG Huifang, GONG Linyang, CHEN Jie, ZHANG Yudong, CAO Hui, LIU Zheying, LI Yukuan, WEI Wenbo, LIU Kaihong. Influence of Acid Activator on Activation Effect ofSolid Waste Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2941-2951. |
[4] | NING Gaopeng, ZHOU Zhengyuan, XIA Guanghua, WU Wenxing, CAO Tianyi, CHEN Yushan. Effects of Sintering Temperature and Mechanically Activated Time on Ceramic Tiles Preparation with Ceramic Solid Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 3026-3033. |
[5] | LI An, WANG Yanjun, ZHANG Zhijie, FAN Zhihong. Properties of Organic Acid Activated Metakaolin Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2434-2440. |
[6] | LYU Junmin, WANG Zheng, YANG Yingzhen, ZHAO Xiaoxia, FAN Subing. Preparation of Single Phase Y Zeolite from Coal Gasification Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2514-2521. |
[7] | HU Kaiwei, CHEN Xuan, LI Tingfeng, ZHANG Junjie, GAO Xuan, YANG Tao. Effect of Mechanical Activation on Early-Age Performance of Sodium Carbonate-Activated GBFS Binders [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2577-2583. |
[8] | YIN Yuan, LIN Kang, ZENG Weixin, CHENG Shufan. Experimental Study on Road Performance of Weak Alkali-Activated Phosphorus Slag-Cement Composite Filler [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2602-2611. |
[9] | WANG Wei, LAI Zengcheng, TAN Peng, JU Zhicheng, YANG Haicheng, FAN Zhihong. Preparation and Properties of Chloride Resistant Concrete with Manufactured Sand and Extra Fine Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2121-2129. |
[10] | PENG Lijuan, KE Guojun, SONG Baixing, JIANG Tian, WANG Wenqing. Fluidity and Mechanical Properties of Waste Glass Powder-Metakaolin Geopolymer Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2168-2175. |
[11] | PEI Junjun, YUAN Bowen, GAO Min, GUO Qilong, LIN Zhenghong, HEI Yameng. Properties of Multi-Component Composite Cementitious System of Regenerated Micropowder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1812-1821. |
[12] | ZHU Yinyuan, ZHU Ganyu, QI Fang, LI Huiquan, CHEN Yan, LI Shaopeng, GUO Yanxia. Research Progress on Preparation and Comprehensive Utilization of Solid Waste Based Calcium Silicate Hydrates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 517-533. |
[13] | ZONG Wei, WANG Yuanhui, XU Liang, LIU Cheng, ZHENG Wuxi. Pavement Performance of Industrial Solid Waste Phosphogypsum Pavement Base Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 766-773. |
[14] | DUAN Liwei, LUO Anbang, CHEN Yinghao, WANG Dehui, LUO Zhengdong. Mechanical Properties and Microstructure Analysis of Metakaolin-Phosphoric Acid Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3694-6703. |
[15] | WANG Wenyao, LUO Qi, LU Liulei, LAI Jin, HUANG Wenhao, ZHUANG Rongchuan, WANG Junfeng, MA Jun. Preparation and Properties of Sulfur Tailings-Based Geopolymer Activated by Alkaline Hydrothermal Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3704-3714. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||