[1] CHEN Z T, LIU Y Q, ZHU W P, et al. Incinerator bottom ash (IBA) aerated geopolymer[J]. Construction and Building Materials, 2016, 112: 1025-1031. [2] PROVIS J L, PALOMO A, SHI C J. Advances in understanding alkali-activated materials[J]. Cement and Concrete Research, 2015, 78: 110-125. [3] WONGSA A, BOONSERM K, WAISURASINGHA C, et al. Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix[J]. Journal of Cleaner Production, 2017, 148: 49-59. [4] 张 军, 胡艳丽. 生活垃圾焚烧炉渣混凝土性能试验研究[J]. 硅酸盐通报, 2019, 38(7): 2250-2254. ZHANG J, HU Y L. Experimental study on the performance of municipal solid waste incineration slag concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2250-2254 (in Chinese). [5] 王佳磊, 许 宁, 谢 宇, 等. 掺杂不同稻壳灰对垃圾焚烧底灰基砌块的性能研究[J]. 硅酸盐通报, 2019, 38(6): 1818-1822+1860. WANG J L, XU N, XIE Y, et al. Performance of doped different rice husk ash for waste incineration bottom ash-based blocks[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6): 1818-1822+1860 (in Chinese). [6] CAPRAI V, FLOREA M V A, BROUWERS H J H. Evaluation of the influence of mechanical activation on physical and chemical properties of municipal solid waste incineration sludge[J]. Journal of Environmental Management, 2018, 216: 133-144. [7] MALDONADO A A, GIRO P J, SVOBODOVA S A, et al. Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size[J]. Journal of Cleaner Production, 2020, 242: 118443. [8] CRISTELO N, SEGADÃES L, COELHO J, et al. Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements[J]. Waste Management, 2020, 104: 60-73. [9] HUANG G D, JI Y S, ZHANG L L, et al. Advances in understanding and analyzing the anti-diffusion behavior in complete carbonation zone of MSWI bottom ash-based alkali-activated concrete[J]. Construction and Building Materials, 2018, 186: 1072-1081. [10] LI Y C, MIN X B, KE Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation[J]. Waste Management, 2019, 83: 202-208. [11] LI Z P, FEI M G, HUYAN C X, et al. Nano-engineered, fly ash-based geopolymer composites: an overview[J]. Resources, Conservation and Recycling, 2021, 168: 105334. [12] MANJUNATH R, NARASIMHAN M C, UMESH K M, et al. Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes[J]. Construction and Building Materials, 2019, 198: 133-147. [13] HUANG G D, JI Y S, ZHANG L L, et al. Influence of calcium content on structure and strength of MSWI bottom ash-based geopolymer[J]. Magazine of Concrete Research, 2019, 71(7): 362-372. [14] TUYAN M, ANDIÇ-ÇAKIR Ö, RAMYAR K. Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer[J]. Composites Part B: Engineering, 2018, 135: 242-252. [15] CRISTELO N, TAVARES P, LUCAS E, et al. Quantitative and qualitative assessment of the amorphous phase of a class F fly ash dissolved during alkali activation reactions-Effect of mechanical activation, solution concentration and temperature[J]. Composites Part B: Engineering, 2016, 103: 1-14. [16] LAND G, STEPHAN D. The effect of synthesis conditions on the efficiency of C-S-H seeds to accelerate cement hydration[J]. Cement and Concrete Composites, 2018, 87: 73-78. [17] LI C, SUN H H, LI L T. A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si + Al) cements[J]. Cement and Concrete Research, 2010, 40(9): 1341-1349. [18] MELLER N, KYRITSIS K, HALL C. The mineralogy of the CaO-Al2O3-SiO2-H2O (C-A-S-H) hydroceramic system from 200 to 350 ℃[J]. Cement and Concrete Research, 2009, 39(1): 45-53. [19] SUN Z Q, VOLLPRACHT A. Isothermal calorimetry and in situ XRD study of the NaOH activated fly ash, metakaolin and slag[J]. Cement and Concrete Research, 2018, 103: 110-122. [20] MARAGHECHI H, RAJABIPOUR F, PANTANO C G, et al. Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity[J]. Cement and Concrete Research, 2016, 87: 1-13. [21] BERNAL S A, MEJíA D G R, PEDRAZA A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cement and Concrete Research, 2011, 41(1): 1-8. [22] BERNAL S A, PROVIS J L, BRICE D G, et al. Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry[J]. Cement and Concrete Research, 2012, 42(10): 1317-1326. [23] BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation[J]. Cement and Concrete Research, 2013, 53: 127-144. [24] LEE T C, WANG W J, SHIH P Y, et al. Enhancement in early strengths of slag-cement mortars by adjusting basicity of the slag prepared from fly-ash of MSWI[J]. Cement and Concrete Research, 2009, 39(8): 651-658. [25] YUAN B, YU Q L, BROUWERS H J H. Time-dependent characterization of Na2CO3 activated slag[J]. Cement and Concrete Composites, 2017, 84: 188-197. [26] WANG K T, HE Y, SONG X L, et al. Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials[J]. Applied Clay Science, 2015, 114: 586-592. |