BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (1): 16-26.
• Cement and Concrete • Previous Articles Next Articles
CHEN Yueshun, TANG Chengyu
Received:
2023-07-21
Revised:
2023-09-21
Online:
2024-01-15
Published:
2024-01-16
[1] LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. Aci Materials Journal, 2001: 483-492. [2] LI V C. Engineered Cementitious composites: tailored composites through micromechanical modeling[J]. Journal of Advanced Concrete Technology, 1998, 1(3): 1-38. [3] AHMARAN M, LI V C. On engineered cementitious composites (ECC): a review of the material and its applications[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 2164: 1-8. [4] ZHOU J, QIAN S Z, YE G, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cement & Concrete Composites, 2012, 34(3): 342-348. [5] 张 聪, 曹明莉, 许 玲. 混凝土多尺度特征与多尺度纤维增强理论研究进展[J]. 混凝土与水泥制品, 2014(3): 44-48. ZHANG C, CAO M L, XU L. Research progress on multi-scale characteristics of concrete and multi-scale fiber reinforcement theory[J]. Concrete and Cement Products, 2014(3): 44-48 (in Chinese). [6] 权长青, 焦楚杰, 杨云英, 等. 混杂纤维混凝土力学性能的正交试验研究[J]. 建筑材料学报, 2019, 22(3): 8. QUAN C Q, JIAO C J, YANG Y Y, et al. Orthogonal test on mechanical properties of hybrid fiber concrete[J]. Journal of Building Materials, 2019, 22(3): 8 (in Chinese). [7] 刘雁宁, 李 辉, 李海旺. 混掺精细钢纤维/PVA纤维水泥基复合材料单轴拉伸试验及本构关系[J]. 中国科技论文, 2023, 18(4): 5. LIU Y N, LI H, LI H W. Uniaxial tensile test and constitutive relationship of mixed fine steel fiber/PVA fiber cement matrix composites[J]. Chinese Science and Technology Papers, 2023, 18(4): 5 (in Chinese). [8] YU J, CHEN Y X, LEUNG C. Mechanical performance of strain-hardening cementitious composites (SHCC) with hybrid polyvinyl alcohol and steel fibers[J]. Composite Structures, 2019, 226: 111198. [9] 曹明莉, 李 黎, 李志文, 等. CaCO3晶须对钢-聚乙烯醇混杂纤维增强水泥基复合材料板弯曲性能的影响[J]. 复合材料学报, 2017, 34(11): 10. CAO M L, LI L, LI Z W, et al. Effect of CaCO3 whiskers on flexural properties of steel-polyvinyl alcohol hybrid fiber reinforced cement-based composite plate[J]. Journal of Composites, 2017, 34(11): 10 (in Chinese). [10] 张 鹏, 亢洛宜, 郭进军, 等. 纳米SiO2和PVA纤维增强水泥基复合材料的断裂性能[J]. 建筑材料学报, 2021, 24(5): 908-915. ZHANG P, KANG L Y, GUO J J, et al. Fracture properties of nanosized SiO2 and PVA fiber reinforced cement-based composites[J]. Journal of Building Materials, 2021, 24(5): 908-915 (in Chinese). [11] KHAN M, CAO M L, ALI M. Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete[J]. Journal of Building Engineering, 2020: 101272. [12] 葛 楠, 胡卓君, 刘艳明, 等. 碳纳米纤维改性水泥基材料的变形及抗裂性能[J]. 建筑材料学报, 2022, 25(10): 1015-1020. GE N, HU Z J, LIU Y M, et al. Deformation and crack resistance of carbon nanofiber modified cement-based materials[J]. Journal of Building Materials, 2022, 25(10): 1015-1020 (in Chinese). [13] CAO M L, ZHANG C, WEI J. Microscopic reinforcement for cement based composite materials[J]. Construction & Building Materials, 2013, 40: 14-25. [14] 张玉斌, 鲍世辉, 张 聪. 混杂纤维增强超高性能透水混凝土的弯曲性能研究[J]. 硅酸盐通报, 2022, 41(6): 1955-1962. ZHANG Y B, BAO S H, ZHANG C. Study on flexural performance of hybrid fiber reinforced ultra-high performance pervious concrete[J]. Bulletin of Chinese Ceramic Society, 2012, 41(6): 1955-1962 (in Chinese). [15] 宋梦凡, 王金邦, 栾从起, 等. 碳酸钙晶须对SHCC性能的影响[J]. 混凝土, 2022(3): 14-19. SONG M F, WANG J B, LUAN C Q, et al. Effect of calcium carbonate whisker on the performance of SHCC[J]. Concrete, 2022(3): 14-19 (in Chinese). [16] 夏超凡, 李志华, 张 聪. 碳酸钙晶须对混杂纤维增强高延性水泥基复合材料力学性能的影响[J]. 功能材料, 2020, 51(1): 6. XIA C F, LI Z H, ZHANG C. Effect of calcium carbonate whisker on mechanical properties of hybrid fiber reinforced high ductility cement-based composites[J]. Journal of Functional Materials, 2019, 51(1): 6 (in Chinese). [17] 金光淋, 殷浚哲, 于 洋, 等. 碳酸钙晶须掺量对水泥砂浆力学性能的影响研究[J]. 建筑结构, 2020, 50(增刊1): 832-836. JIN G L, YIN J Z, YU Y, et al. Study on effect of calcium carbonate whisker content on mechanical properties of cement mortar[J]. Building Structures, 2020, 50(supplement 1): 832-836 (in Chinese). [18] 肖建庄, 罗素蓉, 林扬兴. 钢-PVA混杂纤维高强再生骨料混凝土断裂性能[J]. 建筑结构学报, 2020(12): 10. XIAO J Z, LUO S R, LIN Y X. Fracture performance of steel-PVA hybrid fiber high-strength recycled aggregate concrete[J]. Journal of Building Structures, 2020(12): 10 (in Chinese). [19] 高淑玲, 徐世烺. 电测法确定混凝土裂缝的临界长度[J]. 清华大学学报: 自然科学版, 2007, 47(9): 3. GAO S L, XU S L. Determination of critical length of concrete crack by electrical measurement[J]. Journal of Tsinghua University: Natural Science Edition, 2007, 47(9): 3 (in Chinese). [20] 刘子兴. 碳酸钙晶须水泥基复合材料耐磨性与抗冻性[D]. 大连: 大连理工大学, 2021. LIU Z X. Wear resistance and frost resistance of calcium carbonate whisker cement-based composites[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). [21] 黄 伟, 张阳阳, 葛进进, 等. 纳米SiO2和碳酸钙晶须制备水泥基材料性能试验[J]. 长江科学院院报, 2023, 40(1): 5. HUANG W, ZHANG Y Y, Ge J J, et al. Properties of cement-based materials prepared by nano-SiO2 and calcium carbonate whisker[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 5 (in Chinese). [22] 吴智敏, 徐世烺, 丁一宁, 等. 砼非标准三点弯曲梁试件双K断裂参数[J]. 中国工程科学, 2001(4): 76-81. WU Z M, XU S L, DING Y N, et al. Double K fracture parameters of concrete nonstandard three-point bending beam specimen[J]. Engineering Science, 2001(4): 76-81 (in Chinese). [23] HILLERBORG A. The theoretical basis of a method to determine the fracture energy GF of concrete[J]. Materials and Structure, 1985, 18(4): 291-296. [24] 郭向勇, 方坤河, 冷发光. 混凝土断裂能的理论分析[J]. 哈尔滨工业大学学报, 2005, 37(9): 4. GUO X Y, FANG K H, LENG F G. Theoretical Analysis of fracture energy of concrete[J]. Journal of Harbin Institute of Technology, 2005, 37(9): 4 (in Chinese). [25] 张 东, 刘娟淯, 陈 兵, 等. 关于三点弯曲法确定混凝土断裂能的分析[J]. 建筑材料学报, 1999(3): 206-211. ZHANG D, LIU J Y, CHEN B, et al. Analysis on determination of fracture energy of concrete by three-point bending method[J]. Journal of Building Materials, 1999(3): 206-211 (in Chinese). [26] 钱维民, 苏 骏, 赵家玉, 等. 超低温作用对超高韧性水泥基复合材料断裂性能的影响[J]. 建筑材料学报, 2022(9): 25. QIAN W M, SU J, ZHAO J Y, et al. Effect of ultra-low temperature on fracture properties of ultra-high toughness cement-based composites[J]. Journal of Building Materials, 2022(9): 25 (in Chinese). [27] 吴立山, 余志辉, 袁 振, 等. 高强度高延性水泥基复合材料的弯曲性能[J]. 功能材料, 2021, 52(12): 12159-12164. WU L S, YU Z H, YUAN Z, et al. Bending properties of cement-based composites with high strength and ductility[J]. Journal of Functional Materials, 2021, 52(12): 12159-12164 (in Chinese). [28] 徐世烺, 赵艳华. 混凝土裂缝扩展的断裂过程准则与解析[J]. 工程力学, 2008, 25(增刊2): 20-33. XU S L, ZHAO Y H. Fracture process criteria and analysis of concrete crack propagation[J]. Engineering Mechanics, 2008, 25(supplement 2): 20-33 (in Chinese). [29] XU S L, REINHARDT H W. Determination of double- K criterion for crack propagation in quasi-brittle fracture, part II: analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2): 151-177. [30] CAO M L, XU L, ZHANG C. Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO3) whisker reinforced cement mortar[J]. Composites Part A Applied Science and Manufacturing, 2016, 90: 662-669. [31] 邓祥辉, 高晓悦, 王 睿, 等. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021, 35(16): 16028-16034. DENG X H, GAO X Y, WANG R, et al. Experimental study on frost resistance of recycled concrete and analysis of pore distribution change[J]. Materials Review, 2021, 35(16): 16028-16034 (in Chinese). [32] 赵燕茹, 喻泊厅, 王 磊, 等. 碳化对混凝土孔结构的影响[J]. 混凝土, 2021(12): 5. ZHAO Y R, YU B T, WANG L, et al. Effect of carbonization on pore structure of concrete[J]. Concrete, 2021(12): 5 (in Chinese). [33] 刘斯凤, 许贇晨, 万亭亭, 等. 冷热循环作用下EVA对混凝土孔结构的影响[J]. 建筑材料学报, 2020, 23(3): 9. LIU S F, XU Y C, WAN T T, et al. Effect of EVA on concrete pore structure under cold and heat cycling[J]. Journal of Building Materials, 2020, 23(3): 9 (in Chinese). |
[1] | DU Shuang, WANG Wei, QIAO Min, ZENG Luping, ZHAO Shuang, CHEN Junsong, WU Qingyong, ZHU Bosong. Adaptation and Strength Enhancement Mechanisms of Liquid Accelerators in Low Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 61-70. |
[2] | HAN Yu, ZHAO Fangli, ZHAO Yitong, WANG Baomin. Soft Water Leaching Resistance Mechanism of Slag Cement Based Composites under Stray Current [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 200-208. |
[3] | WANG Lichuan, LI Jing, YU Changbin, CAO Wenquan, LING Jianjun, WANG Qianqian. Influence Mechanism of Hornblende Ballast Machanical Sand and Stone Powder Content on Properties of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 246-256. |
[4] | SHAN Junhong, ZHANG Ze, GAO Peng, WANG Kui. Performance of Desulfurization Building Gypsum Modified by Inorganic Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 268-275. |
[5] | LIN Zhengxiang, TANG Xiaodan, YU Changsheng, BAI Zhipeng, ZHI Fangfang, JIN Weizhun, WANG Liang, JIANG Linhua. Effects of Humidity and Temperature on Electrical Conductivity of MXene Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3117-3124. |
[6] | CHEN Youzhi, WU Xiuqi, YIN Weisong, LI Wanmin, TANG Shichang. Effect of Calcium Carbide Residue on Mechanical Properties and Microstructure of Composite Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3196-3203. |
[7] | LIU Yang, XIAO Xinxin, CHEN Xiang, WANG Bowen, LUO Dong, LU Naiwei. Effect of Carbide Slag on Carbonation Resistance of Alkali-Activated Fly Ash-Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3204-3211. |
[8] | LI Xueliang, ZHAO Qingchao, LI Weiguang, LI Yong, ZHU Yangge, SONG Houbin, YANG Hao, ZHANG Yanping. Influence Mechanism of Coal-Series Metakaolin on Mechanical Properties and Microstructure of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3221-3230. |
[9] | GUO Zhixiang, WANG Qin, ZHANG Qiuchen, ZHENG Haiyu, LIU Kejun. Effect of Fluoride on Structure and Properties of Gypsum-Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3248-3257. |
[10] | YUAN Zhiyong, ZHANG Xueri, LI Kai, XU Chengming, WU Jiali, LIAO Cangdong, ZHENG Meng, WU Yinghao, YAN Faqiang. Evolution of Composition, Structure and Mechanical Properties of High Alumina Porcelain with Sintering Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3315-3323. |
[11] | WU Yuxin, LYU Jieheng, RUAN Jian, TIAN Chen, LIU Chao, HAN Jianjun. Microstructure and Properties of Glass-Ceramics Containing Cu2O Nanocrystallines [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3350-3358. |
[12] | PEI Tianrui, QI Dongyou, ZOU Delin, CAI Yonghui, WANG Zhiyong, HAO Lulu, WANG Yali, ZHANG Yu, LIU Hongyin. Resistance Mechanism of Slag-High Belite Sulfate-Aluminate Cement to Sulfate Attack [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2683-2691. |
[13] | CHU Hongyan, AN Yuanyuan, QIN Jianjian, JIANG Jinyang. Mechanical Properties and Microstructure of High Performance Lightweight Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2722-2732. |
[14] | FENG Yuchuan, JIA Xiaolong, HUI Yingxin, HAN Fangyuan, WAN Lei. Influences of Mother Rock Type and Stone Powder Content on Properties of Mechanism Sand Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2773-2780. |
[15] | LUO Zhe, HUANG Dunwen, PENG Hui. Alkali-Aggregate Reaction Mechanism of Alkali-Activated Metakaolin-Slag Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2830-2836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||