BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (1): 147-157.
• Solid Waste and Eco-Materials • Previous Articles Next Articles
KONG Lingyan1, LIU Shuchang1, BAO Jiuwen1, YIN Xiangzhen2, CAO Yinlong1, CUI Yifei1
Received:
2023-07-25
Revised:
2023-08-09
Online:
2024-01-15
Published:
2024-01-16
CLC Number:
KONG Lingyan, LIU Shuchang, BAO Jiuwen, YIN Xiangzhen, CAO Yinlong, CUI Yifei. Research Progress of Interfacial Bond Properties Between FRP Bars and Seawater Sea-Sand Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 147-157.
[1] 赵莹莹. 海洋环境下CFRP-混凝土界面粘结疲劳性能试验研究[D]. 青岛: 青岛理工大学, 2015. ZHAO Y Y. Experimental study on interfacial bond fatigue performance of CFRP-concrete under marine environment[D]. Qingdao: Qingdao University of Technology, 2015 (in Chinese). [2] HU X L, XIAO J Z, ZHANG K J, et al. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand[J]. Journal of Building Engineering, 2022, 51: 104294. [3] 朱德举, 李龙飞, 周琳林, 等. 超高性能海水海砂混凝土的组成设计与纤维增强增韧[J]. 湖南大学学报(自然科学版), 2023, 50(1): 128-136. ZHU D J, LI L F, ZHOU L L, et al. Composition design of ultra-high performance seawater sea-sand concrete and fiber strengthening and toughening[J]. Journal of Hunan University (Natural Sciences), 2023, 50(1): 128-136 (in Chinese). [4] DONG Z Q, WU G, ZHAO X L, et al. Bond durability of steel-FRP composite bars embedded in seawater sea-sand concrete under constant bending and shearing stress[J]. Construction and Building Materials, 2018, 192: 808-817. [5] TENG J G, XIANG Y, YU T, et al. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering, 2019, 22(14): 3100-3120. [6] AHMED A, GUO S C, ZHANG Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 2020, 256: 119484. [7] CERONI F, COSENZA E, GAETANO M, et al. Durability issues of FRP rebars in reinforced concrete members[J]. Cement and Concrete Composites, 2006, 28(10): 857-868. [8] ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction and Building Materials, 2013, 38: 274-284. [9] FENG P, WANG J, WANG Y, et al. Effects of corrosive environments on properties of pultruded GFRP plates[J]. Composites Part B: Engineering, 2014, 67: 427-433. [10] HASSAN M, BENMOKRANE B, ELSAFTY A, et al. Bond durability of basalt-fiber-reinforced-polymer (BFRP) bars embedded in concrete in aggressive environments[J]. Composites Part B: Engineering, 2016, 106: 262-272. [11] DONG Z Q, WU G, XU B, et al. Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction[J]. Materials & Design, 2016, 92: 552-562. [12] GUO X K, XIONG C S, JIN Z Q, et al. A review on mechanical properties of FRP bars subjected to seawater sea sand concrete environmental effects[J]. Journal of Building Engineering, 2022, 58: 105038. [13] 原 天. 自然暴露时间对FRP筋海水海砂混凝土梁受弯性能的影响[D]. 广州: 广州大学, 2019. YUAN T. Influence of natural exposure on flexural property of FRP rods and concrete beams made of sea water and sea sand[D]. Guangzhou: Guangzhou University, 2019 (in Chinese). [14] 曾小雨. BFRP筋海水海砂混凝土梁的耐久性研究[D]. 广州: 广东工业大学, 2020. ZENG X Y. Durability study of sea water and sea sand concrete beams reinforced with BFRP bars[D].Guangzhou: Guangdong University of Technology, 2020 (in Chinese). [15] ZENG J J, GAO W Y, DUAN Z J, et al. Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns[J]. Construction and Building Materials, 2020, 234: 117383. [16] SIDDIKA A, AL MAMUN M A, ALYOUSEF R, et al. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: a review[J]. Journal of Building Engineering, 2019, 25: 100798. [17] LI J W, GRAVINA R J, SMITH S T, et al. Bond strength and bond stress-slip analysis of FRP bar to concrete incorporating environmental durability[J]. Construction and Building Materials, 2020, 261: 119860. [18] 高 傲, 杨树桐, 高广希, 等. 海洋环境下BFRP筋与珊瑚混凝土粘结性能的试验研究[J]. 复合材料科学与工程, 2020(12): 43-53. GAO A, YANG S T, GAO G X, et al. Experimental study on the bond performance between BFRP bars and coral concrete in marine environment[J]. Composites Science and Engineering, 2020(12): 43-53 (in Chinese). [19] LU Z Y, SU L Z, LAI J, et al. Bond durability of BFRP bars embedded in concrete with fly ash in aggressive environments[J]. Composite Structures, 2021, 271: 114121. [20] HAO Q D, WANG Y L, HE Z, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials, 2009, 23(2): 865-871. [21] 陈应贺. 海水浸泡环境下GFRP筋-混凝土界面粘结耐久性研究[D]. 广州: 广东工业大学, 2021. CHEN Y H. Study on bond durability of GFRP bars concrete interface in seawater immersion environment[D]. Guangzhou: Guangdong University of Technology, 2021 (in Chinese). [22] 高 婧, 范凌云. CFRP筋与海水海砂混凝土粘结性能试验与机制分析[J]. 复合材料学报, 2022, 39(3): 1194-1204. GAO J, FAN L Y. Experiment on bond performance between CFRP bar and seawater sea sand concrete and its working mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1194-1204 (in Chinese). [23] 王 磊, 李 威, 陈 爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12): 3458-3465. WANG L, LI W, CHEN S, et al. Effects of sea water soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3458-3465 (in Chinese). [24] TAHA A, ALNAHHAL W. Bond durability and service life prediction of BFRP bars to steel FRC under aggressive environmental conditions[J]. Composite Structures, 2021, 269: 114034. [25] ZHANG B, ZHU H, CAO R M, et al. Feasibility of using geopolymers to investigate the bond behavior of FRP bars in seawater sea-sand concrete[J]. Construction and Building Materials, 2021, 282: 122636. [26] 单 波, 佟广权, 刘其元. CFRP筋与海水海砂混凝土黏结性能试验[J]. 建筑科学与工程学报, 2020, 37(5): 113-123. SHAN B, TONG G Q, LIU Q Y. Experiment on bond performance of CFRP bars in seawater and sea sand concrete[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 113-123 (in Chinese). [27] ZENG J J, LIAO J J, ZHUGE Y, et al. Bond behavior between GFRP bars and seawater sea-sand fiber-reinforced ultra-high strength concrete[J]. Engineering Structures, 2022, 254: 113787. [28] DAI J Y, YIN S P, LIN F J, et al. Study on bond performance between seawater sea-sand concrete and BFRP bars under chloride corrosion[J]. Construction and Building Materials, 2023, 371: 130718. [29] EDUARDA N, JOSÉ S C, LUíS C, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials, 2021, 287: 123042. [30] LIU T Q, LIU X, FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering, 2020, 191: 107958. [31] 佟广权. FRP筋与海水海砂混凝土粘结性能试验研究[D]. 长沙: 湖南大学, 2020. TONG G Q. Experimental research on the bond performance of FRP bars in seawater and sea sand concrete[D]. Changsha: Hunan University, 2020 (in Chinese). [32] DAVALOS J F, CHEN Y, RAY I. Effect of FRP bar degradation on interface bond with high strength concrete[J]. Cement and Concrete Composites, 2008, 30(8): 722-730. [33] BELARBI A, WANG H Z. Bond durability of FRP bars embedded in fiber-reinforced concrete[J]. Journal of Composites for Construction, 2012, 16(4): 371-380. [34] PAN Y F, YAN D M. Study on the durability of GFRP bars and carbon/glass hybrid fiber reinforced polymer (HFRP) bars aged in alkaline solution[J]. Composite Structures, 2021, 261: 113285. [35] WANG Z K, ZHAO X L, XIAN G J, et al. Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment[J]. Construction and Building Materials, 2017, 156: 985-1004. [36] 黄泽浩. GFRP筋与高强度PE纤维海水海砂混凝土粘结滑移性能的研究[D]. 广州: 广东工业大学, 2021. HUANG Z H. Bond-slip behavior between GFRP bar and high strength PE fiber reinforced seawater sea-sand concrete[D]. Guangzhou: Guangdong University of Technology, 2021 (in Chinese). [37] 陈港文. 侧向约束下不锈钢钢筋-海水海砂混凝土粘结性能试验研究[D]. 大连: 大连理工大学, 2022. CHEN G W. Experimental study on bond behavior between stainless steel rebar and seawater sea-sand concrete under lateral confinement[D]. Dalian: Dalian University of Technology, 2022 (in Chinese). [38] 马 涛, 潘金龙, 魏红雳. 循环荷载作用下CFRP-混凝土粘结性能试验研究[J]. 建筑结构, 2013, 43(19): 15-18+37. MA T, PAN J L, WEI H L. Experimental study of bond behavior between CFRP and concrete under cyclic loading[J]. Building Structure, 2013, 43(19): 15-18+37 (in Chinese). [39] 武芳文, 段钧淇, 何岚清, 等. PVA-ECC与BFRP筋黏结性能试验分析[J]. 哈尔滨工业大学学报, 2023, 55(7): 70-79. WU F W, DUAN J Q, HE L Q, et al. Experimental analysis on bond properties of PVA-ECC and BFRP bars[J]. Journal of Harbin Institute of Technology, 2023, 55(7): 70-79 (in Chinese). [40] CHANG Y, WANG Y L, WANG M F, et al. Bond durability and degradation mechanism of GFRP bars in seawater sea-sand concrete under the coupling effect of seawater immersion and sustained load[J]. Construction and Building Materials, 2021, 307: 124878. [41] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction, 2004, 8(2): 173-181. [42] SALEH N, ASHOUR A, LAM D, et al. Experimental investigation of bond behaviour of two common GFRP bar types in high-strength concrete[J]. Construction and Building Materials, 2019, 201: 610-622. [43] SAYED AHMAD F, FORET G, LE ROY R. Bond between carbon fibre-reinforced polymer (CFRP) bars and ultra high performance fibre reinforced concrete (UHPFRC): experimental study[J]. Construction and Building Materials, 2011, 25(2): 479-485. [44] 赖振宇. FRP约束下不同表面特性FRP筋与海水海砂混凝土粘结性能研究[D]. 大连: 大连理工大学, 2022. LAI Z Y. Study on bond performance between FRP bars with different surface characteristics and seawater sea-sand concrete under FRP confinement[D]. Dalian: Dalian University of Technology, 2022 (in Chinese). [45] 周玲珠, 万钧涛, 郑 愚, 等. GFRP筋与海水海砂高掺量粉煤灰自密实混凝土的粘结性能研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 211-219+236. ZHOU L Z, WAN J T, ZHENG Y, et al. Study on bond behavior of GFRP bars and self-compacting concrete mixed with seawater sea-sand and high-volume fly ash[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 211-219+236 (in Chinese). [46] LIU H X, YANG J W, WANG X Z. Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber[J]. Construction and Building Materials, 2017, 135: 477-483. [47] LI T, ZHU H, WANG Q, et al. Experimental study on the enhancement of additional ribs to the bond performance of FRP bars in concrete[J]. Construction and Building Materials, 2018, 185: 545-554. [48] 陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005, 26(4): 10-18. LU X Z, YE L P, TENG J G, et al. Bond-slip model for FRP-to-concrete interface[J]. Journal of Building Structures, 2005, 26(4): 10-18 (in Chinese). [49] MALVAR L J. Bond stress-slip characteristics of FRP rebar: report TR-2013-SHR[R]. California: Naval Facilities Engineering Service Center, Port Hueneme, 1994. [50] ELIGEHAUSEN R, POPOV E P, BERTERO V. Local bond stress-slip relationships of deformed bars under generalized excitations: experimental results and analytical model[R]. California: Earthquake Engineering Research Center, University of California, Berkeley, 1983. [51] COSENZA E, MANFREDI G, REALFONZO R. Analytical modelling of bond between FRP reinforcing bars and concrete[C]//“Non-Metallic (FRP) Reinforcement for Concrete Structures”-Proceedings of the Second International RILEM Symposium (FRPRCS-2), 1995: 164-171. [52] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction, 1997, 1(2): 40-51. [53] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7): 41-43+82. GAO D Y, ZHU H T, XIE J J. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction, 2003, 33(7): 41-43+82 (in Chinese). [54] 郑乔文, 薛伟辰. 粘砂变形GFRP筋的粘结滑移本构关系[J]. 工程力学, 2008, 25(9): 162-169. ZHENG Q W, XUE W C. Constitutive relationship of bond-slip behavior of sand-coated deformed GFRP rebars[J]. Engineering Mechanics, 2008, 25(9): 162-169 (in Chinese). [55] 林培轩. 海水海砂纤维水泥基复合材料(混凝土)与GFRP筋表面粘结性能的研究[D]. 温州: 温州大学, 2019. LIN P X. Bonding properties of GFRP bars and seawater sand PVA cement-based composites (concrete)[D]. Wenzhou: Wenzhou University, 2019 (in Chinese). [56] 高嘉琪. 不同表面特性FRP筋与海水海砂混凝土粘结性能试验研究[D]. 大连: 大连理工大学, 2022. GAO J Q. Experimental study on bond performance between FRP bar with different surface characteristics and sea-sand concrete[D]. Dalian: Dalian University of Technology, 2022 (in Chinese). [57] 郝庆多, 王言磊, 侯吉林, 等. GFRP/钢绞线复合筋与混凝土粘结滑移本构关系模型[J]. 工程力学, 2009, 26(5): 62-72. HAO Q D, WANG Y L, HOU J L, et al. Bond-slip constitutive model between GFRP/steel wire composite rebars and concrete[J]. Engineering Mechanics, 2009, 26(5): 62-72 (in Chinese). [58] 于志力. FRP筋与海水海砂混凝土界面粘结耐久性研究[D]. 大连: 大连理工大学, 2022. YU Z L. Study on the durability of bonding between FRP bars and seawater sea sand concrete interface[D]. Dalian: Dalian University of Technology, 2022 (in Chinese). [59] 金清平, 周 典, 胡岩磊. 海水环境下GFRP筋-海水海砂混凝土黏结行为演化规律[J]. 中国塑料, 2022, 36(12): 92-99. JIN Q P, ZHOU D, HU Y L. Evolution of bonding behavior of GFRP reinforcement-seawater-sea sand concrete under seawater conditions[J]. China Plastics, 2022, 36(12): 92-99 (in Chinese). |
[1] | GUAN Jiwen, CHEN Hua, CHANG Ping, LIANG Qingwen, DAN Yu, YANG Hanning, CHEN Hongmei. Analysis on Bearing Capacity and Bending Ductility of GFRP-Coral Concrete Columns under Eccentric Compression [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2409-2418. |
[2] | FAN Xiaochun, CUI Qi, ZHANG Ao, WANG Wenqi. Bending Performance of BFRP Bars Alkali-Activated Sea Sand Concrete Beams [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(12): 4242-4253. |
[3] | JIANG Tianhua, MO Dingcong, WAN Congcong, LU Xugang, LI Suzhu. Basic Mechanical Properties and Compressive Stress-Strain Curves of Basalt Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 4063-4071. |
[4] | WAN Congcong, JIANG Tianhua, YU Yi. Basic Mechanical Properties Study of Polypropylene Foam Concrete Based on Orthogonal Test [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(10): 3518-3529. |
[5] | WANG Fuping, ZHANG Mo, ZHOU Boyu. Effect of Recycled Wind Turbine Blade Fiber on Mechanical Properties and Frost Resistance of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(1): 231-238. |
[6] | OUYANG Jianxin, GUO Rongxin, WAN Fuxiong, MA Qianmin, YANG Yang. Tensile Property and Crack Control Mechanism of Basalt Fiber Reinforced Polymer Bar Reinforced ECC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2684-2695. |
[7] | ZHANG Jianbo, CHEN Shengping, LU Yingfa. Deflection and Ductility of FRP Bars Reinforced Concrete Superposed Beams [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2739-2747. |
[8] | ZHANG Jiwang, HUANG Manfeng, SU Shican, YI Jin, QIN Qinglong, WANG Lei. Experimental Study on Uniaxial Compression Performance of High Strength Coral Concrete (HSCC) [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2275-2282. |
[9] | ZHANG Qingfang, HONG Hexuan, SHEN Lu. Meso-Numerical Simulation of Dynamic Compressive Performance and Failure Mode of Wet-Screened Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2283-2291. |
[10] | FAN Xiaochun, XU Wei, CHEN Yuancheng, LIANG Tianfu, YIN Yaoxiao. Experimental Study and Numericals Simulation on Bond Performance of Basalt Fiber Reinforced Polymer Bars and Alkali Activated Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(6): 1896-1911. |
[11] | GUAN Guohao, WANG Xuezhi, HE Jingjing. Research Progress of Seawater Sea-Sand Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(5): 1483-1493. |
[12] | DONG Lei, ZHAO Kun, JIN Wenqiang, NIE Dan, ZHANG Jiawei, GUO Lele. Degradation Law of CFRP-Clay Brick Interface Bond Property under Sulfate Drying and Wetting Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(12): 4290-4299. |
[13] | ZHANG Yichao, CHEN Xingyi, CHEN Xusheng, ZHOU Jinghai, WANG Fei, WANG Qinghe. Damage Characteristics and Constitutive Model of Geopolymer Recycled Concrete under Uniaxial Compression [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(10): 3608-3614. |
[14] | HU Chunhong, WANG Yanwei, ZHU Changxing. Mechanical Properties and Micro Mechanism of Carbon Fiber Reinforced Polymer Cement Grouting Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(1): 20-26. |
[15] | ZHAO Nan, QING Longbang, YANG Zhuofan, MU Ru. Experimental and Numerical Studies on Fiber Pull-Out of Steel Fiber Reinforced Cement Mortar at Different Ages [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2165-2173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||