[1] HELLE J. VCXO theory and practice[C]//29th Annual Symposium on Frequency Control. Atlantic City, NJ, USA. IEEE, 2005: 300-307. [2] TIERSTEN H F. Linear piezoelectric plate vibrations[M]. Boston, MA: Springer US, 1969. [3] VAREL H, ASHKENASI D, ROSENFELD A, et al. Micromachining of quartz with ultrashort laser pulses[J]. Applied Physics A, 1997, 65(4): 367-373. [4] LI B, LI C, ZHAO Y L, et al. Deep reactive ion etching of Z-cut alpha quartz for MEMS resonant devices fabrication[J]. Micromachines, 2020, 11(8): 724. [5] TELLIER C R. Some results on chemical etching of AT-cut quartz wafers in ammonium bifluoride solutions[J]. Journal of Materials Science, 1982, 17(5): 1348-1354. [6] WAN Y, LUAN X H, ZHOU L Z, et al. Wet etching of quartz using a solution based on organic solvents and anhydrous hydrofluoric acid[J]. Materials, 2022, 15(18): 6475. [7] HAN C, LI C, ZHAO Y L, et al. Research on a micro-processing technology for fabricating complex structures in single-crystal quartz[J]. Micromachines, 2020, 11(3): 337. [8] WU X M, ZHOU C H, XI P, et al. Etching quartz with inductively coupled plasma etching equipment[C]//Lithographic and Micromachining Techniques for Optical Component Fabrication II, SPIE Proceedings. San Diego, California, USA. SPIE, 2003: 192. [9] SCHAEPKENS M, OEHRLEIN G S. A review of SiO2 etching studies in inductively coupled fluorocarbon plasmas[J]. ChemInform, 2001, 32(26): 211-221. [10] JUNG S T, SONG H S, KIM D S, et al. Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits[J]. Thin Solid Films, 1999, 341(1/2): 188-191. [11] UJIIE T, KIKUCHI T, ICHIKI T, et al. Fabrication of quartz microcapillary electrophoresis chips using plasma etching[J]. Japanese Journal of Applied Physics, 2000, 39(6R): 3677. [12] GUTTWEIN G K, BALLATO A D, LUKASZEK T J. VHF-UHF piezoelectric resonators: US3694677[P]. 1972-09-26. [13] BERTE M, HARTEMANN P. Quartz resonators at fundamental frequencies greater than 100 MHz[C]//1978 Ultrasonics Symposium. Ultrasonics Symposium. IEEE, 1978: 148-151. [14] WANG P Y, LI M H, LING M X, et al. Design and simulation of a piezoelectric micro-QCM with high resonance frequency and quality factor[C]//2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). Zhengzhou, Henan Province, China. IEEE, 2021: 522-525. [15] DUAN Q R, JIN J, YANG F, et al. Research on inverted-mesa-type quartz resonator[C]//2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). Zhengzhou, Henan Province, China. IEEE, 2021: 71-75. [16] JI J, OIGAWA H, ZHAO M, et al. Electrode optimization of 100 MHz high-frequency quartz resonator based on equivalent mass method[J]. Japanese Journal of Applied Physics, 2013, 52(2R): 025201. [17] ABE T, HUNG V N, ESASHI M. Inverted mesa-type quartz crystal resonators fabricated by deep-reactive ion etching[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(7): 1234-1236. [18] ZHANG J L, LIAO S A, CHEN C, et al. Research on trimming frequency-increasing technology for quartz crystal resonator using laser etching[J]. Micromachines, 2021, 12(8): 894. [19] OSIPOV A A, IANKEVICH G A, SPESHILOVA A B, et al. High-temperature etching of SiC in SF6/O2 inductively coupled plasma[J]. Scientific Reports, 2020, 10: 19977. [20] KNIZIKEVIČIUS R. Theoretical investigation of crystallographic orientation effect on the chemical etching rate[J]. Vacuum, 2017, 136: 101-104. [21] KOLARI K. High etch selectivity for plasma etching SiO2 with AlN and Al2O3 masks[J]. Microelectronic Engineering, 2008, 85(5/6): 985-987. |