[1] SJAUS A, D'ENTREMONT M. Measurement of airborne particle exposure during simulated tracheal intubation using various proposed aerosol containment devices during the COVID-19 pandemic[J]. Anaesthesia, 2020, 76: 7-8. [2] WOLF J, BRUNO S, EICHBERG M, et al. Applying lessons from the Ebola vaccine experience for SARS-CoV-2 and other epidemic pathogens[J]. NPJ Vaccines, 2020, 5: 51. [3] HAJIPOUR M J, FROMM K M, AKBAR ASHKARRAN A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012, 30(10): 499-511. [4] HUH A J, KWON Y J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era[J]. Journal of Controlled Release, 2011, 156(2): 128-145. [5] SUNADA K, MINOSHIMA M, HASHIMOTO K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds[J]. Journal of Hazardous Materials, 2012, 235/236: 265-270. [6] POPOV S, SAPHIER O, POPOV M, et al. Factors enhancing the antibacterial effect of monovalent copper ions[J]. Current Microbiology, 2020, 77(3): 361-368. [7] WU W T, ZHAO W J, WU Y H, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019, 465: 279-287. [8] ASHRAF M E S, ABD E M, AZZAM A M, et al. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating[J]. International Journal of Biological Macromolecules, 2016, 89: 190-197. [9] ZHOU J L, WANG C C, CUNNINGHAM A J, et al. Synthesis and characterization of size-controlled nano-Cu2O deposited on alpha-zirconium phosphate with excellent antibacterial property[J]. Materials Science and Engineering: C, 2019, 101: 499-504. [10] ZHAO Y Z, YAN J H, YANG L, et al. Preparation and application of (Cu2O-Ag)@TA composite nanomaterials with enhanced stability and photocatalytic antibacterial activity[J]. Journal of Vinyl and Additive Technology, 2023, 29(1): 5-16. [11] SUN X L, LI Z C, ZHAO X H, et al. Preparation and properties of calcium alginate nano-Cu2O flame retardant antimicrobial membrane material[C]//Proceedings of the 2016 2nd International Conference on Architectural, Civil and Hydraulics Engineering (ICACHE 2016). September 29-30, 2016. Kunming City, China. Paris, France: Atlantis Press, 2016. [12] 刘小明, 程金树, 徐 英, 等. 抗菌玻璃材料的研究与发展[J]. 玻璃, 2003, 30(4): 6-8. LIU X M, CHENG J S, XU Y, et al. Research and development of antibacterial glass materials[J]. Glass, 2003, 30(4): 6-8 (in Chinese). [13] 程金树, 刘小明, 汤李缨. 磷酸盐抗菌玻璃材料的制备及性能研究[J]. 武汉理工大学学报, 2005, 27(1): 1-3. CHENG J S, LIU X M, TANG L Y. The preparation and property research of phosphate antibacterial glass materials[J]. Journal of Wuhan University of Technology, 2005, 27(1): 1-3 (in Chinese). [14] ZHENG K, KANG J, RUTKOWSKI B, et al. Toward highly dispersed mesoporous bioactive glass nanoparticles with high Cu concentration using Cu/ascorbic acid complex as precursor[J]. Frontiers in Chemistry, 2019, 7: 497. [15] HEYL H, YANG S, HOMA D, et al. Dissolution and diffusion-based reactions within YBa2Cu3O7-x glass fibers[J]. Fibers, 2019, 8(1): 2. [16] JĘCZMIONEK L, KUCHARSKI J, WASYLAK J. AIPO4-containing glass-crystalline materials in the system Li2O-Al2O3-P2O5[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1996, 100(9): 1453-1455. [17] BYKOV V N, OSIPOV A A, ANFILOGOV V N. Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data[J]. Glass Physics and Chemistry, 2003, 29: 105-107. [18] OSIPOV A A, OSIPOVA L M. Structure of glasses and melts in the Na2O-B2O3 system from high-temperature Raman spectroscopic data: Ⅱ. Superstructural units in melts[J]. Glass Physics and Chemistry, 2009, 35(2): 132-140. [19] BIESINGER M C. Advanced analysis of copper X-ray photoelectron spectra[J]. Surface and Interface Analysis, 2017, 49(13): 1325-1334. [20] 王海风, 徐桂香, 董芸谷, 等. 利用离子交换法制备高强载银抗菌玻璃及其性能测试[J]. 材料导报, 2020, 34(12): 12040-12044. WANG H F, XU G X, DONG Y G, et al. Preparation and properties of high strength Ag-carrying antibacterial glass by ion exchange method[J]. Materials Reports, 2020, 34(12): 12040-12044 (in Chinese). [21] 王 静, 王晓燕, 水中和, 等. 玻璃载银抗菌材料的Ag+溶出性质及与大肠杆菌作用机理[J]. 材料导报, 2018, 32(16): 2709-2714+2727. WANG J, WANG X Y, SHUI Z H, et al. Properties of silver ions release and antibacterial mechanism against E. coli of Ag-doped glass antimicrobial material[J]. Materials Review, 2018, 32(16): 2709-2714+2727 (in Chinese). [22] CHEN X D, CUI K P, HAI Z B, et al. Hydrothermal synthesis of Cu2O with morphology evolution and its effect on visible-light photocatalysis[J]. Materials Letters, 2021, 297: 129921. [23] WANG Z, WANG J, IQBAL W, et al. Controllable fabrication and enhanced photocatalysis of Cu2O NP@g-C3N4 NT composite on visible-light-driven degradation of organic dyes in water[J]. Materials Today Sustainability, 2022, 20: 100239. [24] THEKKAE PADIL V V, ČERNÍK M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application[J]. International Journal of Nanomedicine, 2013, 8: 889-898. [25] MULLIGAN A M, WILSON M, KNOWLES J C. The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis[J]. Biomaterials, 2003, 24(10): 1797-1807. |