[1] 吕毅刚, 肖百豪, 韩伟威, 等. 碱激发胶凝材料的碳化性能研究进展[J]. 科技导报, 2022, 40(17): 94-104. LÜ Y G, XIAO B H, HAN W W, et al. Research progress on carbonation properties of alkali-activated materials[J]. Science & Technology Review, 2022, 40(17): 94-104 (in Chinese). [2] PASUPATHY K, BERNDT M, CASTEL A, et al. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years[J]. Construction and Building Materials, 2016, 125: 661-669. [3] 李 健. 粉煤灰基地聚物混凝土抗碳化耐久性能研究[J]. 四川建筑, 2020, 40(4): 306-309. LI J. Study on carbonation resistance and durability of fly ash-based polymer concrete[J]. Sichuan Architecture, 2020, 40(4): 306-309 (in Chinese). [4] 黄 琪, 石宵爽, 王清远, 等. 粉煤灰基地聚物混凝土的碳化性能研究[J]. 中国农村水利水电, 2015(7): 121-125+130. HUANG Q, SHI X S, WANG Q Y, et al. Research on carbonation of fly ash geopolymeric concrete[J]. China Rural Water and Hydropower, 2015(7): 121-125+130 (in Chinese). [5] 原 元, 赵人达, 占玉林, 等. 粉煤灰-矿渣基地聚物混凝土的抗碳化性能[J]. 西南交通大学学报, 2021, 56(6): 1275-1282. YUAN Y, ZHAO R D, ZHAN Y L, et al. Carbonation resistance of fly ash-slag based geopolymer concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1275-1282 (in Chinese). [6] HUANG G D, JI Y S, ZHANG L L, et al. Advances in understanding and analyzing the anti-diffusion behavior in complete carbonation zone of MSWI bottom ash-based alkali-activated concrete[J]. Construction and Building Materials, 2018, 186: 1072-1081. [7] RÄSÄNEN V, PENTTALA V. The pH measurement of concrete and smoothing mortar using a concrete powder suspension[J]. Cement and Concrete Research, 2004, 34(5): 813-820. [8] LI L F, NAM J, HARTT W H. Ex situ leaching measurement of concrete alkalinity[J]. Cement and Concrete Research, 2005, 35(2): 277-283. [9] PASUPATHY K, SANJAYAN J, RAJEEV P. Evaluation of alkalinity changes and carbonation of geopolymer concrete exposed to wetting and drying[J]. Journal of Building Engineering, 2021, 35: 102029. [10] BADAR M S, KUPWADE-PATIL K, BERNAL S A, et al. Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes[J]. Construction and Building Materials, 2014, 61: 79-89. [11] ZHANG J, SHI C J, ZHANG Z H. Effect of Na2O concentration and water/binder ratio on carbonation of alkali-activated slag/fly ash cements[J]. Construction and Building Materials, 2021, 269: 121258. [12] MEI K Y, GU T, ZHENG Y Z, et al. Effectiveness and microstructure change of alkali-activated materials during accelerated carbonation curing[J]. Construction and Building Materials, 2021, 274: 122063. [13] NEDELJKOVIÄ M, GHIASSI B, VAN D L S, et al. Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes[J]. Cement and Concrete Research, 2019, 116: 146-158. [14] 万宗华, 张文芹, 刘志超, 等. 电石渣-矿渣复合胶凝材料性能研究[J]. 硅酸盐通报, 2022, 41(5): 1704-1714. WAN Z H, ZHANG W Q, LIU Z C, et al. Properties of carbide slag-slag composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1704-1714 (in Chinese). [15] 刘 扬, 陈 湘, 王柏文, 等. 碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报, 2023, 42(4): 1353-1362. LIU Y, CHEN X, WANG B W, et al. Preparation and strength mechanism of alkali-activated fly ash-slag-carbide slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1353-1362 (in Chinese). [16] 孙 彬, 毛诗洋, 王景贤, 等. 长观试件混凝土自然碳化与加速碳化的相关性试验研究[J]. 建筑结构, 2019, 49(9): 111-114+70. SUN B, MAO S Y, WANG J X, et al. Experimental study on correlation between natural carbonation and accelerated carbonation of long-term observation concrete specimens[J]. Building Structure, 2019, 49(9): 111-114+70 (in Chinese). [17] 李金玉, 张志媛, 罗兰芬. 氢氧化钙含量测定影响因素的探讨[J]. 中国食品添加剂, 2014(1): 215-217. LI J Y, ZHANG Z Y, LUO L F. Discussion on influence factors on determination of calcium hydroxide content[J]. China Food Additives, 2014(1): 215-217 (in Chinese). [18] JEON D, JUN Y B, JEONG Y, et al. Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system[J]. Cement and Concrete Research, 2015, 67: 215-225. [19] EL-DIDAMONY H, AMER A A, ABD ELA-ZIZ H. Properties and durability of alkali-activated slag pastes immersed in sea water[J]. Ceramics International, 2012, 38(5): 3773-3780. [20] RASHAD A M, ZEEDAN S R. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load[J]. Construction and Building Materials, 2011, 25(7): 3098-3107. [21] 金世红. 固态碱激发粉煤灰/矿渣抗碳化性能研究[D]. 广州: 广州大学, 2021. JIN S H. Study on carbonation resistance of fly ash/slag activated by solid alkali[D].Guangzhou: Guangzhou University, 2021 (in Chinese). [22] NEDELJKOVIÄ M, GHIASSI B, MELZER S, et al. CO2 binding capacity of alkali-activated fly ash and slag pastes[J]. Ceramics International, 2018, 44(16): 19646-19660. |