[1] MURRAY H H. Major kaolin processing developments[J]. International Journal of Mineral Processing, 1980, 7(3): 263-274. [2] VERLINSKAYA R M. Rheological behavior of kaolin and montmorillonite suspensions at low concentrations[J]. Journal of Colloid and Interface Science, 2001, 244(2): 405-409. [3] LITZENBERGER C G. Rheological study of kaolin clay slurry[D]. Saskatoon, SK: University of Saskatchewan, 2003. [4] YAGHTIN M, YAGHTIN A, TANG Z L, et al. Improving the rheological and stability characteristics of highly concentrated aqueous yttria stabilized zirconia slurries[J]. Ceramics International, 2020, 46(17): 26991-26999. [5] MORENO R. Colloidal processing of ceramics and composites[J]. Advances in Applied Ceramics, 2012, 111(5/6): 246-253. [6] 常 豪. 中国建筑卫生陶瓷行业发展的现状及趋势[J]. 陶瓷, 2022(4): 13-15. CHANG H. Current situation and trend of development of Chinese building sanitary ceramics industry[J]. Ceramics, 2022(4): 13-15 (in Chinese). [7] ROBLES P, PICEROS E, LEIVA W H, et al. Analysis of sodium polyacrylate as a rheological modifier for kaolin suspensions in seawater[J]. Applied Clay Science, 2019, 183: 105328. [8] ROMMELFANGER N, VOWINCKEL B, WANG Z X, et al. A simple criterion and experiments for onset of flocculation in kaolin clay suspensions[EB/OL]. arXiv: 2203.15545. https://arxiv.org/abs/2203.15545 [9] NI H T, HUANG Y B. Rheological study on influence of mineral composition on viscoelastic properties of clay[J]. Applied Clay Science, 2020, 187: 105493. [10] TEH E J, LEONG Y K, LIU Y, et al. Differences in the rheology and surface chemistry of kaolin clay slurries: the source of the variations[J]. Chemical Engineering Science, 2009, 64(17): 3817-3825. [11] LOGINOV M, LARUE O, LEBOVKA N, et al. Dewatering and fluidity behaviour of kaolin suspensions in the presence of a dispersant[C]//10th World Filtration Congress Proceedings, 2008. [12] IZAK P, OGŁAZA L, MOZGAWA W, et al. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 196: 155-159. [13] STEMPKOWSKA A, MASTALSKA-POPŁAWSKA J, IZAK P, et al. Stabilization of kaolin clay slurry with sodium silicate of different silicate moduli[J]. Applied Clay Science, 2017, 146: 147-151. [14] LOGINOV M, LARUE O, LEBOVKA N, et al. Fluidity of highly concentrated kaolin suspensions: influence of particle concentration and presence of dispersant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 325(1/2): 64-71. [15] LANDROU G, BRUMAUD C, PLÖTZE M L, et al. A fresh look at dense clay paste: deflocculation and thixotropy mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539: 252-260. [16] GUPTA V, HAMPTON M A, STOKES J R, et al. Particle interactions in kaolinite suspensions and corresponding aggregate structures[J]. Journal of Colloid and Interface Science, 2011, 359(1): 95-103. [17] GARCIA N J, INGRAM M D, BAZÁN J C. Ion transport in hydrated sodium silicates (water glasses) of varying water content[J]. Solid State Ionics, 2002, 146(1/2): 113-122. [18] PAPO A, PIANI L, RICCERI R. Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: rheological characterization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 201(1/2/3): 219-230. [19] FEIGIN R I, NAPPER D H. Depletion stabilization and depletion flocculation[J]. Journal of Colloid and Interface Science, 1980, 75(2): 525-541. [20] WANG Y Q, YANG W J, WANG Q K, et al. The rheological performance of aqueous ceramic ink described based on the modified Windhab model[J]. Materials Research Express, 2020, 7(7): 075103. [21] HERSCHEL W. Consistency of rubber benzene solutions[J]. Industrial & Engineering Chemistry, 1924, 16: 927. [22] CASSON N. A flow equation for pigment-oil suspensions of the printing ink type[J]. Rheology of Disperse Systems, 1959: 82-104. [23] BINGHAM E C. Fluidity and plasticity[M]. McGraw-Hill, 1922. [24] LIN Y, QIN H T, GUO J, et al. Rheology of bentonite dispersions: role of ionic strength and solid content[J]. Applied Clay Science, 2021, 214: 106275. [25] ZHANG X W, KONG L W, YANG A W, et al. Thixotropic mechanism of clay: a microstructural investigation[J]. Soils and Foundations, 2017, 57(1): 23-35. [26] DALBY K N, KING P L. A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-transform infrared spectroscopy[J]. American Mineralogist, 2006, 91(11/12): 1783-1793. [27] OSSWALD J, FEHR K T. FTIR spectroscopic study on liquid silica solutions and nanoscale particle size determination[J]. Journal of Materials Science, 2006, 41(5): 1335-1339. [28] HALASZ I, AGARWAL M, LI R B, et al. Monitoring the structure of water soluble silicates[J]. Catalysis Today, 2007, 126(1/2): 196-202. [29] DUTTA P K, SHIEH D C. Influence of alkali chlorides on distribution of aqueous base solubilized silicate species[J]. Zeolites, 1985, 5(3): 135-138. [30] RICHET P, MYSEN B O, ANDRAULT D. Melting and premelting of silicates: Raman spectroscopy and X-ray diffraction of Li2SiO3 and Na2SiO3[J]. Physics and Chemistry of Minerals, 1996, 23(3): 157-172. [31] SITARZ M, MOZGAWA W, HANDKE M. Rings in the structure of silicate glasses[J]. Journal of Molecular Structure, 1999, 511/512: 281-285. [32] WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties[J]. Canadian Geotechnical Journal, 2006, 43(6): 601-617. |