[1] 张雅文, 王秀峰, 伍媛婷, 等. 文物保护用无机胶凝材料的研究进展[J]. 材料导报, 2012, 26(3): 51-56+68. ZHANG Y W, WANG X F, WU Y T, et al. Research progress on relic protection inorganic cementitious materials[J]. Materials Review, 2012, 26(3): 51-56+68 (in Chinese). [2] VEIGA R. Air lime mortars: what else do we need to know to apply them in conservation and rehabilitation interventions? A review[J]. Construction and Building Materials, 2017, 157: 132-140. [3] 宋彦军, 周振君. 石灰-偏高岭土修复性砂浆的研究进展[J]. 世界科技研究与发展, 2017, 39(1): 39-44. SONG Y J, ZHOU Z J. Research progress of lime-metakaolin restoration mortars[J]. World Sci-Tech R & D, 2017, 39(1): 39-44 (in Chinese). [4] 谭梦琪. 城市更新行动“限拆令”落地 住建部印发《关于在实施城市更新行动中防止大拆大建问题的通知》[J]. 中国勘察设计, 2021(10): 5. TAN M Q. The “Demolition Restriction Order” of Urban Renewal Action was issued by the Ministry of Housing and Urban-Rural Development, and the Notice on Preventing Large Demolition and Construction in the Implementation of Urban Renewal Action was issued[J]. China Engineering Consulting, 2021(10): 5 (in Chinese). [5] FANG S Q, ZHANG K, ZHANG H, et al. A study of traditional blood lime mortar for restoration of ancient buildings[J]. Cement and Concrete Research, 2015, 76: 232-241. [6] 汪浩文, 张 捷. 基于虚拟现实的古建筑建模关键技术研究[J]. 重庆理工大学学报(自然科学), 2018, 32(9): 144-148. WANG H W, ZHANG J. Research on the key technology of ancient architecture modeling based on digital virtual reality[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(9): 144-148 (in Chinese). [7] 兰明章, 聂 松, 王剑锋, 等. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516. LAN M Z, NIE S, WANG J F, et al. A state-of-the-art review on lime-based mortars for restoration of ancient buildings[J]. Materials Reports, 2019, 33(9): 1512-1516 (in Chinese). [8] GARIJO L, ZHANG X X, RUIZ G, et al. Age effect on the mechanical properties of natural hydraulic and aerial lime mortars[J]. Construction and Building Materials, 2020, 236: 117573. [9] GRILO J, SANTOS S A, FARIA P, et al. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions[J]. Construction and Building Materials, 2014, 51: 287-294. [10] VAVRIČUK A, BOKAN B V, KRAMAR S. The influence of metakaolin on the properties of natural hydraulic lime-based grouts for historic masonry repair[J]. Construction and Building Materials, 2018, 172: 706-716. [11] LUO K, LI J, LU Z Y, et al. Effect of nano-SiO2 on early hydration of natural hydraulic lime[J]. Construction and Building Materials, 2019, 216: 119-127. [12] CHO, JIN S, KYE H, et al. Effect of blast furnace slag on the hydration properties in natural hydraulic lime[J]. Journal of Ceramic Processing Research, 2016, 17(02): 122-128. [13] RAHEEM A A, ABDULWAHAB R, KAREEM M A. Incorporation of metakaolin and nanosilica in blended cement mortar and concrete: a review[J]. Journal of Cleaner Production, 2021, 290: 125852. [14] NAVRÁTILOVÁ E, ROVNANÍKOVÁ P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars[J]. Construction and Building Materials, 2016, 120: 530-539. [15] 曾俊杰, 王胜年, 熊建波, 等. 偏高岭土对低热硅酸盐水泥水化性能的影响[J]. 混凝土, 2020(5): 69-72. ZENG J J, WANG S N, XIONG J B, et al. Influence of metakaolin on hydration performance of low heat Portland cement[J]. Concrete, 2020(5): 69-72 (in Chinese). [16] 宋银星, 马芹永. 超细矿渣粉-偏高岭土-水泥注浆材料性能试验与分析[J]. 中国科技论文, 2020, 15(3): 360-365+372. SONG Y X, MA Q Y. Performance test and analysis of superfine slag powder-metakaolin-cement grouting material[J]. China Sciencepaper, 2020, 15(3): 360-365+372 (in Chinese). [17] 陶 涛, 杨建明, 李 涛, 等. 偏高岭土和粉煤灰对大流动性磷酸钾镁水泥抗盐冻性能的影响[J]. 混凝土, 2021(4): 87-90+95. TAO T, YANG J M, LI T, et al. Effect of fly ash and metakaolin on salt-frost resistance of high fluidity magnesium potassium phosphate cement[J]. Concrete, 2021(4): 87-90+95 (in Chinese). [18] BILLONG N, MELO U C, KAMSEU E, et al. Improving hydraulic properties of lime-rice husk ash (RHA) binders with metakaolin (MK)[J]. Construction and Building Materials, 2011, 25(4): 2157-2161. [19] 许 栋, 张大江, 王栋民, 等. 矿粉/偏高岭土对天然水硬性石灰早期性能的影响[J]. 矿业科学学报, 2022, 7(5): 632-642. XU D, ZHANG D J, WANG D M, et al. Effects of slag powder/metakaolin on the early performance of natural hydraulic lime[J]. Journal of Mining Science and Technology, 2022, 7(5): 632-642 (in Chinese). [20] SILVA B A, FERREIRA P A P, GOMES A. Natural hydraulic lime versus cement for blended lime mortars for restoration works[J]. Construction and Building Materials, 2015, 94: 346-360. [21] 姜 广, 戎志丹, 孙 伟. 偏高岭土对高性能水泥砂浆性能的影响[J]. 东南大学学报(自然科学版), 2015, 45(1): 121-125. JIANG G, RONG Z D, SUN W. Effects of metakaolin on properties of high performance mortar[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(1): 121-125 (in Chinese). [22] 袁润章. 胶凝材料学[M]. 2版. 武汉: 武汉工业大学出版社, 1996: 52-53. YUAN R Z. Cementitious materials science[M]. 2nd ed. Wuhan: Wuhan University of Technology Press, 1996: 52-53 (in Chinese). [23] 王景霞, 何 斌, 牛世伟, 等. 生石灰激发赤泥-粉煤灰协同水泥固化Cu2+污染高岭土的电化学特性[J]. 科学技术与工程, 2021, 21(12): 5054-5059. WANG J X, HE B, NIU S W, et al. Electrochemical characteristics of Cu2+ contaminated kaolin solidified by quicklime activated red mud-fly ash and cement[J]. Science Technology and Engineering, 2021, 21(12): 5054-5059 (in Chinese). [24] 李 黎, 赵林毅, 李最雄. 中国古建筑中几种石灰类材料的物理力学特性研究[J]. 文物保护与考古科学, 2014, 26(3): 74-84. LI L, ZHAO L Y, LI Z X. Study on the physical and mechanical properties of several lime materials in ancient Chinese architecture[J]. Sciences of Conservation and Archaeology, 2014, 26(3): 74-84 (in Chinese). [25] GAMEIRO A, SANTOS S A, FARIA P, et al. Physical and chemical assessment of lime-metakaolin mortars: influence of binder: aggregate ratio[J]. Cement and Concrete Composites, 2014, 45: 264-271. [26] 宋彦军. 石灰-偏高岭土胶凝材料的制备及其天然矿物纤维改性研究[D]. 西安: 长安大学, 2017. SONG Y J. Study on preparation of lime-metakaolin cementitious material and modification of natural mineral fiber[D]. Xi’an: Chang’an University, 2017 (in Chinese). [27] 李亚刚, 廖宜顺, 刘艳玲, 等. 超细矿渣粉和偏高岭土对硫铝酸盐水泥水化和强度的影响[J]. 硅酸盐通报, 2021, 40(5): 1586-1593+1609. LI Y G, LIAO Y S, LIU Y L, et al. Effects of ultrafine ground granulated blast furnace slag and metakaolin on hydration and strength of calcium sulfoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1586-1593+1609 (in Chinese). [28] CHEN M X, YANG L, ZHENG Y, et al. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up[J]. Construction and Building Materials, 2020, 252: 119090. [29] 刘艳玲, 廖宜顺, 李亚刚. 超细矿渣粉和偏高岭土对硫铝酸盐水泥早期收缩性能的影响[J]. 硅酸盐通报, 2022, 41(6): 2090-2097+2116. LIU Y L, LIAO Y S, LI Y G. Effects of ultrafine ground granulated blast furnace slag and metakaolin on early-age shrinkage of calcium sulfoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2090-2097+2116 (in Chinese). [30] 刘园圆, 雷绍民, 赵 亮, 等. 偏高岭土水泥基材料的水化性能与微观结构[J]. 非金属矿, 2019, 42(5): 31-34. LIU Y Y, LEI S M, ZHAO L, et al. Hydration properties and microstructure of cement-based materials with metakaolin[J]. Non-Metallic Mines, 2019, 42(5): 31-34 (in Chinese). [31] MOROPOULOU A, BAKOLAS A, BISBIKOU K. Investigation of the technology of historic mortars[J]. Journal of Cultural Heritage, 2000, 1(1): 45-58. [32] 杨凤玲, 嵇银行, 李玉寿, 等. 偏高岭土对混凝土性能影响研究[J]. 混凝土与水泥制品, 2011(5): 4-8. YANG F L, JI Y H, LI Y S, et al. Study on the effect of metakaolin on the properties of concrete[J]. Concrete and Cement Products, 2011(5): 4-8 (in Chinese). |