BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2023, Vol. 42 ›› Issue (12): 4341-4350.
• Solid Waste and Eco-Materials • Previous Articles Next Articles
ZHANG Zhaozhen1, JIN Xiaodong1, SUN Shibing1, TIAN Yingliang1, ZHAO Zhiyong1, LI Peixin2, YAN Huajian1
Received:
2023-07-19
Revised:
2023-09-24
Online:
2023-12-15
Published:
2023-12-12
CLC Number:
ZHANG Zhaozhen, JIN Xiaodong, SUN Shibing, TIAN Yingliang, ZHAO Zhiyong, LI Peixin, YAN Huajian. Review on Recent Developments of RecyclingWaste Wind Turbine Blades[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(12): 4341-4350.
[1] 王 恰. 2020—2060年中国风电装机规模及其CO2减排预测[J]. 生态经济, 2021, 37(7): 13-21. WANG Q. Forecast of China’s wind power installed capacity and corresponding CO2 reduction from 2020 to 2060[J]. Ecological Economy, 2021, 37(7): 13-21 (in Chinese). [2] 李丽旻. 叶片回收难题考验风电行业[N]. 中国能源报, 2020-03-30. LI L M. Blade recycling problem tests wind power industry[N]. China Energy News, 2020-03-30 (in Chinese). [3] LIU P, MENG F R, BARLOW C Y. Wind turbine blade end-of-life options: an economic comparison[J]. Resources, Conservation and Recycling, 2022, 180: 106202. [4] 封孝信, 白 龙, 贾 援, 等. 玻璃钢废弃物在水泥基材料中的应用研究进展[J]. 新型建筑材料, 2022, 49(4): 66-72. FENG X X, BAI L, JIA Y, et al. Research progress of application of waste fiber reinforced plastic in cementitious materials[J]. New Building Materials, 2022, 49(4): 66-72 (in Chinese). [5] 许淳瑶, 葛立超, 冯红翠, 等. 风力发电现状及叶片组成与回收利用综述[J]. 热力发电, 2022, 51(9): 29-41. XU C Y, GE L C, FENG H C, et al. Review on status of wind power generation and composition and recycling of wind turbine blades[J]. Thermal Power Generation, 2022, 51(9): 29-41 (in Chinese). [6] SHUAIB N A, MATIVENGA P T. Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites[J]. Journal of Cleaner Production, 2016, 120: 198-206. [7] RAMIREZ-TEJEDA K, TURCOTTE D A, PIKE S. Unsustainable wind turbine blade disposal practices in the United States[J]. NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy, 2017, 26(4): 581-598. [8] FONTE R, XYDIS G. Wind turbine blade recycling: an evaluation of the European market potential for recycled composite materials[J]. Journal of Environmental Management, 2021, 287: 112269. [9] MISHNAEVSKY L. Sustainable end-of-life management of wind turbine blades: overview of current and coming solutions[J]. Materials, 2021, 14(5): 1124. [10] DEENEY P, NAGLE A J, GOUGH F, et al. End-of-Life alternatives for wind turbine blades: sustainability Indices based on the UN sustainable development goals[J]. Resources, Conservation and Recycling, 2021, 171: 105642. [11] PICKERING S J. Recycling technologies for thermoset composite materials—current status[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(8): 1206-1215. [12] PIÑERO-HERNANZ R, DODDS C, HYDE J, et al. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(3): 454-461. [13] ARTURI K R, SOKOLI H U, SØGAARD E G, et al. Recovery of value-added chemicals by solvolysis of unsaturated polyester resin[J]. Journal of Cleaner Production, 2018, 170: 131-136. [14] SAKELLARIOU N. Current and potential decommissioning scenarios for end-of-life composite wind blades[J]. Energy Systems, 2018, 9(4): 981-1023. [15] 刘胜强, 贺 升, 周益辉, 等. 风电叶片废弃物回收技术综述[J]. 中国资源综合利用, 2021, 39(11): 109-111. LIU S Q, HE S, ZHOU Y H, et al. Overview of wind turbine blade waste recovery technology[J]. China Resources Comprehensive Utilization, 2021, 39(11): 109-111 (in Chinese). [16] RAJABIPOUR F, MARAGHECHI H, FISCHER G. Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials[J]. Journal of Materials in Civil Engineering, 2010, 22(12): 1201-1208. [17] ASTM C1260, Standard test method for potential alkali reactivity of aggregates (mortar-bar method)[S]. American Society for Testing Material (ASTM) International: West Conshohocken, PA, USA, 2007. [18] TITTARELLI F, MORICONI G. Use of GRP industrial by-products in cement based composites[J]. Cement and Concrete Composites, 2010, 32(3): 219-225. [19] TITTARELLI F, SHAH S P. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: part 1[J]. Construction and Building Materials, 2013, 47: 1532-1538. [20] RIBEIRO M C S, FIÚZA A, CASTRO A C M, et al. Mix design process of polyester polymer mortars modified with recycled GFRP waste materials[J]. Composite Structures, 2013, 105: 300-310. [21] FENG Y C, ZHAO F Q. Research on waste FRP fiber reinforced adhesive mortar[J]. IOP Conference Series: Materials Science and Engineering, 2017, 167: 012056. [22] 彭龙贵. 一种抗裂抹面砂浆及其制备方法: CN110482893B[P]. 2022-03-22. PENG L G. An anti-crack coating mortar and its preparation method: CN110482893B[P]. 2022-03-22 (in Chinese). [23] 彭龙贵. 一种抗裂石膏及其制备方法: CN110436872A[P]. 2022-03-22. PENG L G. An anti-cracking gypsum and its preparation method: CN110436872A[P]. 2022-03-22 (in Chinese). [24] 彭龙贵. 一种抗裂腻子及其制备方法: CN110408257A[P]. 2022-03-22. PENG L G. An anti-cracking putty and a preparation method thereof: CN110408257A[P]. 2022-03-22 (in Chinese). [25] FENG Y C, ZHAO F Q, XU H. Recycling and utilization of waste glass fiber reinforced plastics[J]. MATEC Web of Conferences, 2016, 67: 07012. [26] 冯艳超. 废玻璃钢纤维增强粘结砂浆的研究[D]. 石家庄: 河北科技大学, 2018: 15-30. FENG Y C. Study on waste FRP fiber reinforced bonding mortar[D]. Shijiazhuang: Hebei University of Science and Technology, 2018: 15-30 (in Chinese). [27] ZHOU Y W, WENG Y T, LI L M, et al. Recycled GFRP aggregate concrete considering aggregate grading: compressive behavior and stress-strain modeling[J]. Polymers, 2022, 14(3): 581. [28] YAZDANBAKHSH A, BANK L C, RIEDER K A, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades[J]. Resources, Conservation and Recycling, 2018, 128: 11-21. [29] BATURKIN D, HISSEINE O A, MASMOUDI R, et al. Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation and Recycling, 2021, 174: 105807. [30] ASOKAN P, OSMANI M, PRICE A. Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete[J]. Construction and Building Materials, 2010, 24(4): 448-460. [31] CORREIA J R, ALMEIDA N M, FIGUEIRA J R. Recycling of FRP composites: reusing fine GFRP waste in concrete mixtures[J]. Journal of Cleaner Production, 2011, 19(15): 1745-1753. [32] SEBAIBI N, BENZERZOUR M, ABRIAK N E, et al. Mechanical properties of concrete-reinforced fibres and powders with crushed thermoset composites: the influence of fibre/matrix interaction[J]. Construction and Building Materials, 2012, 29: 332-338. [33] GARCÍA D, VEGAS I, CACHO I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete[J]. Construction and Building Materials, 2014, 64: 293-300. [34] 腾银见. 玻璃钢再生纤维及粉末对活性粉末混凝土性能的影响研究[D]. 绵阳: 西南科技大学, 2020: 22-32. TENG Y J. Study on the influence of recycled FRP fiber and powder on the properties of reactive powder concrete[D]. Mianyang: Southwest University of Science and Technology, 2020: 22-32 (in Chinese). [35] HALBERD J, HOUSTON D. Natural-fibre-reinforced polymer composites in automotive applications: low-cost composites in vehicle manufacture[J]. JOM, 2006: 80-86. [36] MONTEIRO S N, LOPES F P D, FERREIRA A S, et al. Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly[J]. JOM, 2009, 61(1): 17-22. [37] 王海刚, 张京发, 王伟宏, 等. 纤维增强木塑复合材料研究进展[J]. 林业科学, 2016, 52(6): 130-139. WANG H G, ZHANG J F, WANG W H, et al. Research of fiber reinforced wood-plastic composites: a review[J]. Scientia Silvae Sinicae, 2016, 52(6): 130-139 (in Chinese). [38] JEAMTRAKULL S, KOSITCHAIYONG A, MARKPIN T, et al. Effects of wood constituents and content, and glass fiber reinforcement on wear behavior of wood/PVC composites[J]. Composites Part B: Engineering, 2012, 43(7): 2721-2729. [39] 崔益华, BAHMAN N, STEPHEN L, 等. 玻璃纤维/木塑混杂复合材料及其协同增强效应[J]. 高分子材料科学与工程, 2006, 22(3): 231-234. CUI Y H, BAHMAN N, STEPHEN L, et al. Glass fiber/wood plastic hybrid composites and their synergistic reinforcing effects[J]. Polymer Materials Science & Engineering, 2006, 22(3): 231-234 (in Chinese). [40] 吴建军. 利用FRP废弃物与秸秆纤维制备木塑复合材料的工艺及性能研究[D]. 济南: 济南大学, 2015: 41-55. WU J J. Study on the technology and properties of wood-plastic composites prepared from FRP waste and straw fiber[D]. Jinan: University of Jinan, 2015: 41-55 (in Chinese). [41] 滕朝阳. FRP废渣/秸秆纤维木塑复合材料的制备与研究[D]. 济南: 济南大学, 2016: 27-39. TENG Z Y. Preparation and study of FRP waste residue/straw fiber wood-plastic composites[D]. Jinan: University of Jinan, 2016: 27-39 (in Chinese). [42] YALINKILIC M K, GEZER E D, TAKAHASHI M, et al. Boron addition to non- or low-formaldehyde cross-linking reagents to enhance biological resistance and dimensional stability of wood[J]. Holz Als Roh- Und Werkstoff, 1999, 57(5): 351-357. [43] 张 兴. 木塑复合材料界面改性及阻燃机理的研究[D]. 北京: 北京化工大学, 2016: 15-30. ZHANG X. Study on interfacial modification and flame retardant mechanism of wood-plastic composites[D]. Beijing: Beijing University of Chemical Technology, 2016: 15-30 (in Chinese). [44] DORIEH A, SELAKJANI P P, SHAHAVI M H, et al. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: a review[J]. International Journal of Adhesion and Adhesives, 2022, 114: 103106. [45] MATKÓ S, TOLDY A, KESZEI S, et al. Flame retardancy of biodegradable polymers and biocomposites[J]. Polymer Degradation and Stability, 2005, 88(1): 138-145. [46] GARCÍA M, HIDALGO J, GARMENDIA I, et al. Wood-plastics composites with better fire retardancy and durability performance[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(11): 1772-1776. [47] BORYSIAK S, PAUKSZTA D, HELWIG M. Flammability of wood-polypropylene composites[J]. Polymer Degradation and Stability, 2006, 91(12): 3339-3343. [48] 张素风, 刘 媛, 修慧娟. 废弃玻璃钢填充聚丙烯复合材料的性能研究[J]. 热固性树脂, 2017, 32(1): 50-54. ZHANG S F, LIU Y, XIU H J. Study on the properties of PP matrix composites filled with the waste glass fiber reinforced plastics[J]. Thermosetting Resin, 2017, 32(1): 50-54 (in Chinese). [49] 张素风, 刘 媛, 修慧娟. 改性剂对废弃玻璃钢/聚丙烯复合材料性能的影响[J]. 玻璃钢/复合材料, 2017(7): 77-81. ZHANG S F, LIU Y, XIU H J. Effects of modifier on mechanical properties of WGFRP/PP composites[J]. Fiber Reinforced Plastics/Composites, 2017(7): 77-81 (in Chinese). [50] KENNERLEY J R, KELLY R M, FENWICK N J, et al. The characterisation and reuse of glass fibres recycled from scrap composites by the action of a fluidised bed process[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(7): 839-845. [51] CUNLIFFE A M, WILLIAMS P T. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis[J]. Fuel, 2003, 82(18): 2223-2230. [52] JOB S. Composite Recycling-summary of recent research and development[J]. Materials KTN Reports, 2010: 26. [53] FILIP P, WEISS Z, RAFAJA D. On friction layer formation in polymer matrix composite materials for brake applications[J]. Wear, 2002, 252(3/4): 189-198. [54] RIBEIRO M C S, MEIRA-CASTRO A C, SILVA F G, et al. Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: a case study regarding GFRP pultrusion wastes[J]. Resources, Conservation and Recycling, 2015, 104: 417-426. [55] 叶林忠. 废玻璃钢粉填充丁腈橡胶的性能研究[J]. 再生资源与循环经济, 2009, 2(11): 39-41. YE L Z. Properties of NBR vulcanizates filled with waste FRP powder[J]. Renewable Resources and Recycling Economy, 2009, 2(11): 39-41 (in Chinese). [56] PALMER J, GHITA O R, SAVAGE L, et al. Successful closed-loop recycling of thermoset composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 490-498. [57] RAHIMIZADEH A, KALMAN J, FAYAZBAKHSH K, et al. Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing[J]. Composites Part B: Engineering, 2019, 175: 107101. [58] MOSLEHI A, AJJI A, HEUZEY M C, et al. Polylactic acid/recycled wind turbine glass fiber composites with enhanced mechanical properties and toughness[J]. Journal of Applied Polymer Science, 2022, 139(15): 51934. [59] RAHIMIZADEH A, TAHIR M, FAYAZBAKHSH K, et al. Tensile properties and interfacial shear strength of recycled fibers from wind turbine waste[J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105786. |
[1] | LIU Yumei, YANG Lang, RAO Feng, ZHANG Kaiming, SUN Chuanlin. Research Progress of Chloride Ions on Corrosion of Marine Concrete Reinforcement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3059-3074. |
[2] | DENG Xianghui, ZHANG Peng, WANG Rui, WU Qiyuan, WANG Xu. Frost Resistance Durability and Damage Model of Fiber Concrete in Tibet Plateau Area [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3143-3153. |
[3] | WEI Yaping, LI Shaocheng, WANG Youzhi, TIAN Changjin. Synergistic Effect of Multi-Scale MgO Expansion Agent and SAP on Mechanical and Shrinkage Properties of UHPC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3154-3165. |
[4] | YUN Jianzhou, CHEN Shunchao, ZHENG Weilong, NIE Liangpeng, YUAN Shengtao. Influence of Age on Error of Concrete Member Tested by Ultrasonic-Rebound Combined Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3166-3175. |
[5] | ZHOU Wenjian, XUE Wen, XU Dan, LI Ying. Research on Basic Properties and Mechanism of Carya Cathayensis Peels Biochar Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3186-3195. |
[6] | LI Xueliang, ZHAO Qingchao, LI Weiguang, LI Yong, ZHU Yangge, SONG Houbin, YANG Hao, ZHANG Yanping. Influence Mechanism of Coal-Series Metakaolin on Mechanical Properties and Microstructure of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3221-3230. |
[7] | TONG Xiaogen, ZHANG Kaifeng, MENG Gang, ZHU Wangke, WANG Min, FU Wanzhang. Influence of Gold Tailing Composite Sand on Properties of Different Strength Grade Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3231-3239. |
[8] | YANG Yibo, LIANG Songsuo, LIU Fucai, XIE Rui, OU Jinsheng, GUO Wenying, WANG Hengchang. Effect and Mechanism of Low Water Absorption Ceramic Recycled Sand on Mechanical and Drying Shrinkage Properties of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3277-3285. |
[9] | PENG Man, GAO Yongtao, HAN Yang, CHEN Xiuli, KOU Xiongjun. Experimental Study on Mechanical Properties of Scrap Steel Fiber Reinforced Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3286-3294. |
[10] | ZHANG Na, SUN Qian, ZHANG Pengyu, WANG Dongmei, WANG Qin. Effects of Polymers on Waterproofing and Mechanical Properties of Mortar after Heat Treatment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2703-2711. |
[11] | CHU Hongyan, AN Yuanyuan, QIN Jianjian, JIANG Jinyang. Mechanical Properties and Microstructure of High Performance Lightweight Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2722-2732. |
[12] | CHE Zhihao, WANG Jiabin, ZHANG Kaifeng, FAN Yijie. Durability Degradation Law of Recycled Aggregate Concrete with Multiple Cementitious Materials System Subjected to Compound Salt Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2733-2742. |
[13] | WU Huiqin, LIU Xingchi, CHEN Yuliang. Cyclic Compression Performance and Constitutive Relationship of Carbon Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2743-2753. |
[14] | WANG Ercheng, LI Gege, CHAI Yingke, ZHANG Hongchun, LI Yancang, WANG Yanjie. Fracture Performance of Steel-Sisal Hybrid Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2754-2763. |
[15] | GONG Mingzi, PAN Axin, ZHANG Zilong, WANG Tao, RAO Xianpeng, CHEN Chen, HUANG Wei. Pull-Out Behaviour of Steel Fiber in Ultra-High Performance Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2764-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||