BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2023, Vol. 42 ›› Issue (12): 4283-4297.
• Cement and Concrete • Previous Articles Next Articles
WANG Rui, ZHANG Pinle, HU Jing
Received:
2023-07-10
Revised:
2023-09-15
Online:
2023-12-15
Published:
2023-12-12
[1] 闫维明, 王志超, 钱增志, 等. 混杂纤维水泥基复合材料轴心受压应力-应变关系研究[J]. 工业建筑, 2019, 49(6): 141-146. YAN W M, WANG Z C, QIAN Z Z, et al. Research on stress-strain relationship of hybrid fiber cement composites under axial compression[J]. Industrial Construction, 2019, 49(6): 141-146 (in Chinese). [2] 潘钻峰, 汪 卫, 孟少平, 等. 混杂聚乙烯醇纤维增强水泥基复合材料力学性能[J]. 同济大学学报(自然科学版), 2015, 43(1): 33-40. PAN Z F, WANG W, MENG S P, et al. Study on mechanical properties of hybrid PVA fibers reinforced cementitious composites[J]. Journal of Tongji University (Natural Science), 2015, 43(1): 33-40 (in Chinese). [3] 杜修力, 窦国钦, 李 亮, 等. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4): 138-144+150. DU X L, DOU G Q, LI L, et al. Exeperimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics, 2011, 28(4): 138-144+150 (in Chinese). [4] 陈宝春, 林毅焌, 杨 简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报(自然科学版), 2020, 48(1): 58-68. CHEN B C, LIN Y J, YANG J, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(1): 58-68 (in Chinese). [5] 赵 健, 廖 霖, 张 帆, 等. 钢纤维混凝土弯曲性能和纤维分布试验研究[J]. 建筑材料学报, 2020, 23(4): 838-845. ZHAO J, LIAO L, ZHANG F, et al. Experimental study on flexural properties and fiber distribution of steel fiber reinforced concrete[J]. Journal of Building Materials, 2020, 23(4): 838-845 (in Chinese). [6] 权长青, 焦楚杰, 杨云英, 等. 混杂纤维混凝土力学性能的正交试验研究[J]. 建筑材料学报, 2019, 22(3): 363-370. QUAN C Q, JIAO C J, YANG Y Y, et al. Orthogonal experimental study on mechanical properties of hybrid fiber reinforced concrete[J]. Journal of Building Materials, 2019, 22(3): 363-370 (in Chinese). [7] 陈宇良, 张绍松, 徐金俊, 等. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 112-118. CHEN Y L, ZHANG S S, XU J J, et al. Mechanical properties of polyvinyl alcohol fiber recycled concrete under compression and shear[J]. Materials Reports, 2023, 37(11): 112-118 (in Chinese). [8] 许有俊, 李明浩, 张治华, 等. PVA纤维对混凝土抗压强度和轴心抗压强度的影响[J]. 化工新型材料, 2020, 48(1): 250-252. XU Y J, LI M H, ZHANG Z H, et al. Influence of PVA fiber on compressive strength and axial compression strength of concrete[J]. New Chemical Materials, 2020, 48(1): 250-252 (in Chinese). [9] NOUSHINI A, SAMALI B, VESSALAS K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete[J]. Construction and Building Materials, 2013, 49: 374-383. [10] YAO X, HUANG G, WANG M M, et al. Mechanical properties and microstructure of PVA fiber reinforced cemented soil[J]. KSCE Journal of Civil Engineering, 2021, 25(2): 482-491. [11] PAN Z F, WU C, LIU J Z, et al. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)[J]. Construction and Building Materials, 2015, 78: 397-404. [12] 褚 汉. 基于国产PVA-PET纤维体系的ECC优化设计研究[D]. 南京: 东南大学, 2021. CHU H. Research on ECC optimization design based on domestic PVA-PET fiber system[D]. Nanjing: Southeast University, 2021 (in Chinese). [13] 徐 波, 宋焕成. 混杂纤维复合材料的混杂效应[J]. 复合材料学报, 1988, 5(1): 67-73+95. XU B, SONG H C. The hybrid effect of hybrid fibrous composites[J]. Acta Materiae Compositae Sinica, 1988, 5(1): 67-73+95 (in Chinese). [14] RAMBO D A S, DE-ANDRADE S F, FILHO R D T. Effect of steel fiber hybridization on the fracture behavior of self-consolidating concretes[J]. Cement and Concrete Composites, 2014, 54: 100-109. [15] QIAN C X, STROEVEN P. Development of hybrid polypropylene-steel fibre-reinforced concrete[J]. Cement and Concrete Research, 2000, 30(1): 63-69. [16] LAWLER J S, ZAMPINI D, SHAH S P. Microfiber and macrofiber hybrid fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2005, 17(5): 595-604. [17] 王振波. 聚乙烯醇-钢纤维混杂增强水泥基复合材料力学性能研究[D]. 北京: 清华大学, 2016. WANG Z B. Study on mechanical properties of cement-based composite reinforced by polyvinyl alcohol and steel fiber hybrid[D]. Beijing: Tsinghua University, 2016 (in Chinese). [18] 陈晓梅, 王文华. 混杂纤维轻骨料混凝土配合比优选研究[J]. 混凝土与水泥制品, 2016(9): 44-47. CHEN X M, WANG W H. Optimization study on mix proportion of hybrid fiber lightweight aggregate concrete[J]. China Concrete and Cement Products, 2016(9): 44-47 (in Chinese). [19] 汪海东, 曾志兴. 基于主成分分析法的高性能再生混凝土性能优化设计[J]. 混凝土, 2011(4): 51-53. WANG H D, ZENG Z X. Optimization of recycled high performance concrete base on principal component analysis[J]. Concrete, 2011(4): 51-53 (in Chinese). [20] 李根群. 改性玄武岩纤维分散性及其对混凝土力学性能的影响研究[D]. 沈阳: 沈阳理工大学, 2022. LI G Q. Study on dispersion of modified basalt fiber and its influence on mechanical properties of concrete[D]. Shenyang: Shenyang Ligong University, 2022 (in Chinese). [21] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard test method for basic properties of building mortar: JGJ/T 70—2009[S]. Beijing: China Construction Industry Publishing House, 2009 (in Chinese). [22] 胡 静, 张品乐, 吴 磊, 等. 基于响应面法的ECC基体力学性能研究与配合比优化[J]. 材料导报, 2022, 36(增刊2): 173-177. HU J, ZHANG P L, WU L, et al. Study on mechanical properties of ECC matrix and optimization of mix proportion based on response surface methodology[J]. Materials Reports, 2022, 36(supplement 2): 173-177 (in Chinese). [23] AHMED S F U, MAALEJ M. Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites[J]. Construction and Building Materials, 2009, 23(1): 96-106. [24] CHEN Y, QIAO P. Crack growth resistance of hybrid fiber-reinforced cement matrix composites[J]. Journal of Aerospace Engineering, 2011, 24: 154-161. [25] AHMED S F U, MAALEJ M, PARAMASIVAM P. Flexural responses of hybrid steel-polyethylene fiber reinforced cement composites containing high volume fly ash[J]. Construction and Building Materials, 2007, 21(5): 1088-1097. [26] 邓明科, 孙宏哲, 梁兴文, 等. 延性纤维混凝土抗压与抗弯性能试验研究[J]. 工业建筑, 2014, 44(10): 107-112+116. DENG M K, SUN H Z, LIANG X W, et al. Experimental study on compressive behavior and flexural behavior of ductile fiber reinforced concrete[J]. Industrial Construction, 2014, 44(10): 107-112+116 (in Chinese). [27] 李 艳, 刘泽军, 梁兴文. 高性能PVA纤维增强水泥基复合材料单轴受拉特性[J]. 工程力学, 2013, 30(1): 322-330. LI Y, LIU Z J, LIANG X W. Tensile performance of high performance pva fiber reinforced cementitious composites under uniaxial tension[J]. Engineering Mechanics, 2013, 30(1): 322-330 (in Chinese). [28] 李晓琴, 杨 潇, 丁祖德, 等. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361. LI X Q, YANG X, DING Z D, et al. Optimized mix proportion design of ECC based on the UDEM-ACE method[J]. Materials Reports, 2019, 33(14): 2354-2361 (in Chinese). [29] 凡有纪. 自密实钢纤维混凝土收缩徐变性能试验研究[D]. 郑州: 华北水利水电大学, 2017. FAN Y J. Experimental study on shrinkage and creep properties of self-compacting steel fiber reinforced concrete[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017 (in Chinese). [30] 冯 蒙, 张天成, 耿海彬, 等. 自密实钢纤维混凝土在透水框架中的应用研究[J]. 人民黄河, 2021, 43(6): 50-54. FENG M, ZHANG T C, GENG H B, et al. Applied research of self-compacting steel fiber reinforced concrete for pervious frames[J]. Yellow River, 2021, 43(6): 50-54 (in Chinese). [31] 刘莉莎. 橡胶钢纤维再生骨料混凝土轴压和弯曲性能研究[D]. 广州: 广东工业大学, 2014. LIU L S. Study on axial compression and bending properties of rubber steel fiber recycled aggregate concrete[D]. Guangzhou: Guangdong University of Technology, 2014 (in Chinese). [32] 苏炜炜. 纤维增强全再生粗骨料混凝土物理及力学性能研究[D]. 南宁: 广西大学, 2021. SU W W. Study on physical and mechanical properties of fiber reinforced fully recycled coarse aggregate concrete[D]. Nanning: Guangxi University, 2021 (in Chinese). [33] 薛 兵. 基于细观尺度的钢纤维混凝土损伤破坏数值模拟研究[D]. 徐州: 中国矿业大学, 2017. XUE B. Numerical simulation of damage and failure of steel fiber reinforced concrete based on mesoscale[D]. Xuzhou: China University of Mining and Technology, 2017 (in Chinese). [34] 赵可英, 牟 凯. 基于灰色关联度分析法和主成分分析法对泥页岩储层评价方法的探讨[J]. 地质与勘探, 2023, 59(2): 443-450. ZHAO K Y, MU K. Evaluation of shale reservoirs based on grey relation analysis and principal component analysis[J]. Geology and Exploration, 2023, 59(2): 443-450 (in Chinese). [35] 区伟健, 房鑫炎. 基于熵值法和主成分分析法的黑启动模式评估[J]. 电力系统保护与控制, 2014, 42(8): 22-27. OU W J, FANG X Y. Evaluation of black start mode based on entropy method and principal component analysis method[J]. Power System Protection and Control, 2014, 42(8): 22-27 (in Chinese). [36] 刘 挺, 柏 林. 基于逻辑决断图: 主成分分析法的部署备件包品种确定[J]. 航空工程进展, 2022, 13(5): 156-162. LIU T, BAI L. Determination of deployed spare parts package varieties based on logical decision diagram-principal component analysis method[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 156-162 (in Chinese). |
[1] | PENG Man, GAO Yongtao, HAN Yang, CHEN Xiuli, KOU Xiongjun. Experimental Study on Mechanical Properties of Scrap Steel Fiber Reinforced Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3286-3294. |
[2] | WANG Ercheng, LI Gege, CHAI Yingke, ZHANG Hongchun, LI Yancang, WANG Yanjie. Fracture Performance of Steel-Sisal Hybrid Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2754-2763. |
[3] | GONG Mingzi, PAN Axin, ZHANG Zilong, WANG Tao, RAO Xianpeng, CHEN Chen, HUANG Wei. Pull-Out Behaviour of Steel Fiber in Ultra-High Performance Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2764-2772. |
[4] | ZHANG Dingfei, LYU Qihang, ZHANG Peng, ZHU Zhen, CHEN Xiangnan, CAO Jichang. Experimental Study on Soft Soil Solidified by Fly Ash and Carbide Slag Geopolymer Based on Response Surface Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2821-2829. |
[5] | LI Haijiao, WANG Jiajun, HAN Xiping, TAO Qi, ZHANG Shilong. Fatigue Resistance of Fiber Reinforced Lightweight Aggregate Concrete with High Content Mineral Admixture [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2856-2864. |
[6] | SUN Tingchao, ZENG Deming, CAO Mingli. Flexural Properties of Silance Coupling Agents Modified Steel Fiber Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2326-2335. |
[7] | WANG Qing, GAO Shuchang, GAO Jiacheng, WEN Changcheng, XU Gang. Performance of Ultra-High Performance Lightweight Concrete with Pottery Sand and Its Influencing Factors [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(6): 1996-2006. |
[8] | WU Licheng, CHEN Xiangsheng, LEI Jiangsong, ZHENG Aiyuan, WANG Xuetao, DENG Yisan. Analysis of Flexural Performance of 3D Hooked-End Steel Fiber Reinforced Concrete Based on Three-Point Bending Test of Notched Beam [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(5): 1661-1671. |
[9] | LIU Ziyi, SONG Shaomin. Optimal Design of Hybrid Fiber-Composite Cementitious Material System Based on Response Surface Methodology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(12): 4197-4207. |
[10] | ZANG Yun, WANG Pan, WANG Muhan, WANG Xinpeng, HOU Dongshuai, ZHAO Tiejun. Influence Mechanism of Graphite Oxide on PVA Fiber-CSH Interface Based on Molecular Dynamics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 3799-3806. |
[11] | ZHANG Pinle, ZHU Haotian, HU Jing, ZENG Jingyuan, TAO Zhong. Mechanical Properties of High Cost Performance Hybrid Fiber Engineered Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 3816-3826. |
[12] | TAO Xuejun, LUO Jianlin, FAN Kangxin, CHEN Jie, ZHU Min, GAO Yibo. Meso-Compressive Fracture Simulation and Performance Analysis of Steel Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 3884-3894. |
[13] | ZHU Ming, GONG Nengping, MU Chaomin, CAI Tianyu, ZHANG Yu. Dynamic and Static Mechanical Properties of Steel Fiber Reinforced Self-Compacting Concrete after Exposed to High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 3895-3905. |
[14] | WANG Congcong, DU Hongxiu, SHI Lina, FAN Qi. Experimental Study on Electrical Properties of Carbon Fiber-Steel Fiber Cement Matrix Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2696-2705. |
[15] | ZHANG Jianbo, CHEN Shengping, LU Yingfa. Deflection and Ductility of FRP Bars Reinforced Concrete Superposed Beams [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2739-2747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||