[1] 黎恒杆, 王玉林, 罗 昊, 等. 多壁碳纳米管分散性对水泥基材料导电性能和电热特性的影响[J]. 硅酸盐通报, 2020, 39(11): 3438-3443. LI H G, WANG Y L, LUO H, et al. Effect of dispersion of multi-walled carbon nanotubes on electrical and electrothermal properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3438-3443 (in Chinese). [2] SILVESTRO L, GLEIZE P J P. Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: a systematic literature review[J]. Construction and Building Materials, 2020, 264: 120237. [3] LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. [4] 秦 煜, 胡魏凯, 王威娜, 等. 碳纳米管水泥基复合材料压阻效应研究进展[J]. 硅酸盐学报, 2021, 49(10): 2298-2304. QIN Y, HU W K, WANG W N, et al. Research progress on piezoresistive effect of carbon nanotubes cement-based composites[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2298-2304 (in Chinese). [5] 胡魏凯. 碳纳米管混凝土构件压阻效应的全过程机理研究[D]. 重庆: 重庆交通大学, 2023. HU W K. A study on the whole process mechanism of the piezoresistive effect of carbon nanotube concrete members[D]. Chongqing: Chongqing Jiaotong University, 2023 (in Chinese). [6] 李相国, 明 添, 刘卓霖, 等. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(5): 1497-1502. LI X G, MING T, LIU Z L, et al. Research on durability and mechanical properties of carbon nanotube cement matrix composites[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(5): 1497-1502 (in Chinese). [7] 朱 平, 邓广辉, 邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 材料导报, 2018, 32(1): 149-158+166. ZHU P, DENG G H, SHAO X D. Review on dispersion methods of carbon nanotubes in cement-based composites[J]. Materials Review, 2018, 32(1): 149-158+166 (in Chinese). [8] 施 韬, 李泽鑫, 李闪闪. 碳纳米管增强水泥基复合材料的自收缩及抗裂性能[J]. 复合材料学报, 2019, 36(6): 1528-1535. SHI T, LI Z X, LI S S. Autogenous shrinkage and crack resistance of carbon nanotubes reinforced cement based composites[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1528-1535 (in Chinese). [9] 刘巧玲, 孙 伟, 孙 波, 等. 碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J]. 东南大学学报(自然科学版), 2014, 44(3): 662-667. LIU Q L, SUN W, SUN B, et al Preparation of carbon nanotube water-based dispersion and its effect on the strength of cement mortar[J]. Journal of Southeast University (Natural Science Edition), 2014, 44 (3): 662-667 (in Chinese). [10] MOUSAVI M, BAHARI A. Influence of functionalized MWCNT on microstructure and mechanical properties of cement paste[J]. Sādhanā, 2019, 44(5): 1-13. [11] MOHSEN M O, TAHA R, ABU TAQA A, et al. Optimum carbon nanotubes content for improving flexural and compressive strength of cement paste[J]. Construction and Building Materials, 2017, 150: 395-403. [12] HAMZAOUI R, BENNABI A, GUESSASMA S, et al. Optimal carbon nanotubes concentration incorporated in mortar and concrete[J]. Advanced Materials Research, 2012, 587: 107-110. [13] CHAIPANICH A, RIANYOI R, NOCHAIYA T. The effect of carbon nanotubes and silica fume on compressive strength and flexural strength of cement mortars[J]. Materials Today: Proceedings, 2017, 4(5): 6065-6071. [14] AHMED H, BOGAS J A, GUEDES M. Mechanical behavior and transport properties of cementitious composites reinforced with carbon nanotubes[J]. Journal of Materials in Civil Engineering, 2018, 30(10): 04018257. [15] 李伟娜, 李 晔, 李 晶, 等. 碳纳米管改性水泥基复合材料力学性能研究[J]. 混凝土, 2022(8): 97-101. LI W N, LI Y, LI J, et al. Study on mechanical properties of cement-based composites modified by carbon nanotubes[J]. Concrete, 2022(8): 97-101 (in Chinese). [16] TRAGAZIKIS I K, DASSIOS K G, EXARCHOS D A, et al. Acoustic emission investigation of the mechanical performance of carbon nanotube-modified cement-based mortars[J]. Construction and Building Materials, 2016, 122: 518-524. [17] 时金娜, 赵燕茹, 郝 松, 等. 基于DIC技术的高温后混凝土变形性能[J]. 建筑材料学报, 2019, 22(4): 584-591. SHI J N, ZHAO Y R, HAO S, et al. Deformation behavior of concrete under uniaxial compression after high temperature by DIC technology[J]. Journal of Building Materials, 2019, 22(4): 584-591 (in Chinese). [18] GENG J S, SUN Q, ZHANG Y C, et al. Studying the dynamic damage failure of concrete based on acoustic emission[J]. Construction and Building Materials, 2017, 149: 9-16. [19] 苏怀智, 姚可夫, 杨立夫, 等. 声发射测试方法及其用于水泥基材料劣化过程的评估[J]. 硅酸盐学报, 2022, 50(11): 2971-2980. SU H Z, YAO K F, YANG L F, et al. Acoustic emission testing method and its application in evaluating the degradation process of cement-based materials[J]. Journal of Silicates, 2022, 50(11): 2971-2980 (in Chinese). [20] 朱德滨. 基于声发射技术的高韧性水泥基复合材料开裂损伤特性[J]. 武汉理工大学学报, 2012, 34(7): 94-97+123. ZHU D B. Crack damage characteristics of high toughness cement-based composite materials based on acoustic emission technology[J]. Journal of Wuhan University of Technology, 2012, 34(7): 94-97+123 (in Chinese). [21] 卜静武, 徐慧颖, 羌宇杰, 等. 橡胶混凝土轴拉破坏过程中声发射特性[J]. 建筑科学与工程学报, 2022, 39(2): 78-86. BU J W, XU H Y, QIANG Y J, et al. Acoustic emission characteristics of rubber concrete in axial tension process[J]. Journal of Architecture and Civil Engineering, 2022, 39(2): 78-86 (in Chinese). [22] 任会兰, 杜一宁, 宋水舟. 基于DIC方法研究混凝土劈裂的变形和破坏[J]. 高压物理学报, 2022, 36(4): 91-100. REN H L, DU Y N, SONG S Z. Research on the deformation and failure of concrete splitting based on DIC method[J]. Journal of High Pressure Physics, 2022, 36(4): 91-100 (in Chinese). [23] 赵燕茹, 张 杰, 宋 博, 等. 基于DIC方法的高温后混凝土应变局部化研究[J]. 混凝土, 2022(4): 37-43. ZHAO Y R, ZHANG J, SONG B, et al. Research on localization of concrete strain after high temperature based on DIC method[J]. Concrete, 2022(4): 37-43 (in Chinese). |