[1] JUENGER M C G, SNELLINGS R, BERNAL S A. Supplementary cementitious materials: new sources, characterization, and performance insights[J]. Cement and Concrete Research, 2019, 122: 257-273. [2] 阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007, 35(增刊1): 167-171. YAN P Y. Mechanism of fly ash’s effects during hydration process of composite binder[J]. Journal of the Chinese Ceramic Society, 2007, 35(supplement 1): 167-171 (in Chinese). [3] JIAO D W, SHI C J, YUAN Q, et al. Effect of constituents on rheological properties of fresh concrete-a review[J]. Cement and Concrete Composites, 2017, 83: 146-159. [4] 刘 宇, 黎梦圆, 阎培渝. 矿物掺合料对胶凝材料浆体流变性能和触变性的影响[J]. 硅酸盐学报, 2019, 47(5): 594-601. LIU Y, LI M Y, YAN P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 594-601 (in Chinese). [5] 宋少民, 陈泓燕. 铁尾矿微粉对低熟料胶凝材料混凝土性能的影响研究[J]. 硅酸盐通报, 2020, 39(8): 2557-2566. SONG S M, CHEN H Y. Influence of iron tailings powder on performance of low clinker cementitious material concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2557-2566 (in Chinese). [6] CHU S H, KWAN A K H. Novel hybrid fiber factor for hybrid fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2021, 33(10): 04021278. [7] 刘娟红, 宋少民, 钟建锋, 等. 聚丙烯纤维对桥面铺装轻骨料混凝土性能影响[J]. 北京工业大学学报, 2011, 37(5): 734-739. LIU J H, SONG S M, ZHONG J F, et al. Influence of polypropylene fiber on the properties of bridge deck pavement lightweight aggregate concrete[J]. Journal of Beijing University of Technology, 2011, 37(5): 734-739 (in Chinese). [8] AKCAY B, OZSAR D S. Do polymer fibres affect the distribution of steel fibres in hybrid fibre reinforced concretes?[J]. Construction and Building Materials, 2019, 228: 116732. [9] 胡浩聪, 刘娟红, 王金安. 纤维增强混凝土韧性及声发射特征分析[J]. 煤炭学报, 2023, 48(3): 1209-1219. HU H C, LIU J H, WANG J A. Toughness test and acoustic emission characteristics analysis of fiber reinforced concrete[J]. Journal of China Coal Society, 2023, 48(3): 1209-1219 (in Chinese). [10] 张 翔, 何廷树, 何 娟. 硅酸盐水泥-粉煤灰-脱硫石膏复合材料的性能研究[J]. 硅酸盐通报, 2014, 33(4): 796-799. ZHANG X, HE T S, HE J. Study on the properties of Portland cement-fly ash-desulfurization gypsum composites[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 796-799 (in Chinese). [11] 栗东平, 平浩岩, 张凯帆, 等. 钢渣-矿渣-脱硫石膏复合胶凝材料的制备及水化机理[J]. 科学技术与工程, 2023, 23(6): 2558-2566. LI D P, PING H Y, ZHANG K F, et al. Preparation and hydration mechanism of composite cementitious materials containing steel slag, slag and desulfurization gypsum[J]. Science Technology and Engineering, 2023, 23(6): 2558-2566 (in Chinese). [12] 胡 静, 张品乐, 吴 磊, 等. 基于响应面法的ECC基体力学性能研究与配合比优化[J]. 材料导报, 2022, 36(增刊2): 173-177. HU J, ZHANG P L, WU L, et al. Study on mechanical properties of cementitious matrix based on response surface method and optimization of the fitting ratio[J]. Materials Reports, 2022, 36(supplement 2): 173-177 (in Chinese). [13] 王鹏博, 尹冠生, 冯俊杰, 等. 基于NSGA-Ⅱ与熵权TOPSIS法的混杂纤维再生混凝土配合比多目标优化[J]. 硅酸盐通报, 2022, 41(12): 4189-4201. WANG P B, YIN G S, FENG J J, et al. Multi-objective optimization of mix proportion of hybrid fiber recycled aggregate concrete based on NSGA-Ⅱ and entropy weight TOPSIS method[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4189-4201 (in Chinese). [14] ASADZADEH S, KHOSHBAYAN S. Multi-objective optimization of influential factors on production process of foamed concrete using Box-Behnken approach[J]. Construction and Building Materials, 2018, 170: 101-110. [15] 刘凤利, 张安康, 刘俊华, 等. 基于响应曲面法的脱硫石膏基胶凝材料体系配比优化[J]. 中国粉体技术, 2023, 29(2): 19-28. LIU F L, ZHANG A K, LIU J H, et al. Optimization of proportioning of desulfurized gypsum based cementitious material system based on response surface methodology[J]. China Powder Science and Technology, 2023, 29(2): 19-28 (in Chinese). [16] NGOC-TRA LAM M, LE D H, NGUYEN D L. Reuse of clay brick and ceramic waste in concrete: a study on compressive strength and durability using the Taguchi and Box-Behnken design method[J]. Construction and Building Materials, 2023, 373: 130801. [17] 刘树龙, 李公成, 刘国磊, 等. 基于响应面法的矿渣基全固废胶凝材料配比优化[J]. 硅酸盐通报, 2021, 40(1): 187-193. LIU S L, LI G C, LIU G L, et al. Ratio optimization of slag-based solid waste cementitious material based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 187-193 (in Chinese). [18] KUMAR R. Modified mix design and statistical modelling of lightweight concrete with high volume micro fines waste additive via the Box-Behnken design approach[J]. Cement and Concrete Composites, 2020, 113: 103706. [19] 张兰芳, 翟建锦. 基于响应面法的碱激发水泥砂浆配合比优化[J]. 硅酸盐通报, 2019, 38(11): 3619-3624. ZHANG L F, ZHAI J J. Mixture ratio optimization of alkali-activated cement mortar based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3619-3624 (in Chinese). [20] 王静文, 王 伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097. WANG J W, WANG W. Response surface based multi-objective optimization of basalt fiber reinforced foamed concrete[J]. Materials Reports, 2019, 33(24): 4092-4097 (in Chinese). [21] 高英力, 冯心崚, 龙国鑫, 等. 混杂纤维-尾矿砂ECC配合比优化及疲劳性能研究[J]. 硅酸盐通报, 2023, 42(5): 1785-1793. GAO Y L, FENG X L, LONG G X, et al. Ratio optimization and fatigue performance research of mixed fiber-tailing sand ECC[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1785-1793 (in Chinese). [22] 夏冬桃, 郑 挚, 吴 昊. 钢-聚丙烯混杂纤维混凝土与既有混凝土的黏结劈拉性能试验研究[J]. 混凝土, 2022(9): 132-136. XIA D T, ZHENG Z, WU H. Experimental research on splitting tensile property between steel-polypropylene HFRC and existing concrete[J]. Concrete, 2022(9): 132-136 (in Chinese). [23] 池 寅, 尹从儒, 徐礼华, 等. 钢-聚丙烯混杂纤维增强超高性能混凝土单轴循环受压力学性能[J]. 硅酸盐学报, 2021, 49(11): 2331-2345. CHI Y, YIN C R, XU L H, et al. Compressive mechanical properties of steel-polypropylene hybrid fiber reinforced ultrahigh-perfromance concrete under cyclic compression[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2331-2345 (in Chinese). [24] 崔 凯, 徐礼华, 池 寅, 等. 钢-聚丙烯混杂纤维混凝土单轴受压疲劳寿命研究[J]. 土木工程学报, 2023, 56(9): 26-38. CUI K, XU L H, CHI Y, et al. Fatigue life analysis of steel-polypropylene hybrid fiber reinforced concrete subjected to uniaxial constant-amplitude cyclic compression[J]. China Civil Engineering Journal, 2023, 56(9): 26-38 (in Chinese). [25] 王振波, 王鹏宇, 孙 鹏. 高延性水泥基材料纤维分布及其影响因素研究进展[J]. 硅酸盐学报, 2022, 50(8): 2284-2295. WANG Z B, WANG P Y, SUN P. Review on fiber distribution effect on engineered cementitious composites[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2284-2295 (in Chinese). |