BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2023, Vol. 42 ›› Issue (11): 4167-4177.
Special Issue: 新型功能材料
• New Functional Materials • Previous Articles Next Articles
WU Yifan1,2, WANG Xingtao1,2, SUN Jinfeng1,2, MENG Yongqiang1,2, WAN Hongjing3
Received:
2023-06-19
Revised:
2023-08-28
Online:
2023-11-15
Published:
2023-11-22
[1] HU F, WU S Y, SUN Y G. Hollow-structured materials for thermal insulation[J]. Advanced Materials, 2019, 31(38): e1801001. [2] CHARAI M, SGHIOURI H, MEZRHAB A, et al. Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials[J]. Journal of Cleaner Production, 2021, 292: 126064. [3] ZHAO Y, ZHANG X L, XU X F. Application and research progress of cold storage technology in cold chain transportation and distribution[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1419-1434. [4] ALIFANOV O M, SALOSINA M O, BUDNIK S A, et al. Design of aerospace vehicles' thermal protection based on heat-insulating materials with optimal structure[J]. Aerospace, 2023, 10(7): 629. [5] LEI Y F, CHEN X H, SONG H H, et al. The influence of thermal treatment on the microstructure and thermal insulation performance of silica aerogels[J]. Journal of Non-Crystalline Solids, 2017, 470: 178-183. [6] SHI B L, XIE L, MA B, et al. Preparation and properties of highly transparent SiO2 aerogels for thermal insulation[J]. Gels, 2022, 8(11): 744. [7] NG S, JELLE B P, SANDBERG L I, et al. Hollow silica nanospheres as thermal insulation materials for construction: impact of their morphologies as a function of synthesis pathways and starting materials[J]. Construction and Building Materials, 2018, 166: 72-80. [8] BAO Y, GUO R Y, MA J Z. Hierarchical flower-like hollow SiO2@TiO2 spheres with enhanced thermal insulation and ultraviolet resistance performances for building coating[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24250-24261. [9] AN Z M, HOU X B, ZHOU P, et al. A novel flexible, layered, recoverable SiO2 fiber skeleton and aerogel composites material prepared by papermaking process[J]. Ceramics International, 2021, 47(9): 12963-12969. [10] WANG L, MA D H, XU C H, et al. Flexible TiO2/SiO2 nanofibrous membrane with high near-infrared reflectance for thermal insulation[J]. Journal of Non-Crystalline Solids, 2023, 616: 122489. [11] MAO X, ZHAO L, ZHANG K, et al. Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy[J]. Nano Research, 2022, 15(3): 2592-2598. [12] YANG M M, YANG L X, CHEN Z F, et al. Flexible Electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation[J]. Ceramics International, 2023, 49(6): 9165-9172. [13] ZHU Z Z, ZHU K Z, GUO J H, et al. Preparation and durability evaluation of vanadium dioxide intelligent thermal insulation films[J]. Colloid and Interface Science Communications, 2022, 48: 100619. [14] ZHANG X X, CHENG X T, SI Y, et al. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation[J]. Chemical Engineering Journal, 2022, 433: 133628. [15] WANG J Y, PETIT D, REN S Q. Transparent thermal insulation silica aerogels[J]. Nanoscale Advances, 2020, 2(12): 5504-5515. [16] WANG L, MA D H, XU C H, et al. Preparation of flexible hollow TiO2 fibrous membranes for thermal-insulation applications by coaxial electrospinning[J]. Ceramics International, 2023, 49(14): 22875-22881. [17] ZHANG X, LI N, LIU X H, et al. A novel approach to directly achieve SiO2 hollow nanofibers via mono-axis electrospinning united with fluorination technique[J]. Materials Letters, 2023, 330: 133307. [18] QIN Z, XU X J, XU T F, et al. High-strength thermal insulating porous mullite fiber-based ceramics[J]. Journal of the European Ceramic Society, 2022, 42(15): 7209-7218. [19] LIU H, TIAN Y, JIAO J H, et al. Thermal conductivity modeling of hollow fiber-based porous structures for thermal insulation applications[J]. Journal of Non-Crystalline Solids, 2022, 575: 121188. [20] BRENDEL H, SEIFERT G, RAETHER F. Heat transfer properties of hollow-fiber insulation materials at high temperatures[J]. Journal of Thermophysics and Heat Transfer, 2017, 31(2): 463-472. [21] 王红梅, 郑振荣, 张楠楠, 等. 多孔纤维织物热湿传递数值模拟的研究进展[J]. 纺织学报, 2016, 37(11): 159-165. WANG H M, ZHENG Z R, ZHANG N N, et al. Research progress of numerical simulation on heat and moisture transfer in porous textiles[J]. Journal of Textile Research, 2016, 37(11): 159-165 (in Chinese). [22] TOBERER E S, BARANOWSKI L L, DAMES C. Advances in thermal conductivity[J]. Annual Review of Materials Research, 2012, 42: 179-209. [23] 张晓山, 王 兵, 吴 楠, 等. 高温隔热用微纳陶瓷纤维研究进展[J]. 无机材料学报, 2021, 36(3): 245-256. ZHANG X S, WANG B, WU N, et al. Micro-nano ceramic fibers for high temperature thermal insulation[J]. Journal of Inorganic Materials, 2021, 36(3): 245-256 (in Chinese). [24] REGNER K T, FREEDMAN J P, MALEN J A. Advances in studying phonon mean free path dependent contributions to thermal conductivity[J]. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(3): 183-205. [25] DARYABEIGI K, CUNNINGTON G R, KNUTSON J R. Heat transfer modeling for rigid high-temperature fibrous insulation[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(3): 414-421. [26] SI Y S, SUN J T, LIU F J, et al. Rabbit-hair-like SiO2/PI composite nanofibers with super durability for thermal insulation[J]. Composites Part B: Engineering, 2023, 254: 110542. [27] MALIK R, KIM Y W, SONG I H. High interfacial thermal resistance induced low thermal conductivity in porous SiC-SiO2 composites with hierarchical porosity[J]. Journal of the European Ceramic Society, 2020, 40(3): 594-602. [28] YU M T, ZHAO S S, YANG L, et al. Preparation of a superhydrophilic SiO2 nanoparticles coated chitosan-sodium phytate film by a simple ethanol soaking process[J]. Carbohydrate Polymers, 2021, 271: 118422. [29] ZHANG W Y, GAO N J, LI J W, et al. Enhanced anti-icing and anticorrosion properties of nano-SiO2 composite superhydrophobic coating constructed by a large-scale micropillar array approach[J]. Progress in Organic Coatings, 2023, 175: 107324. [30] 温佳杰, 陈越军, 崔 燚, 等. 电纺柔性SiO2纳米纤维增强气相SiO2隔热材料制备及性能[J]. 中国陶瓷, 2021, 57(12): 22-27. WEN J J, CHEN Y J, CUI Y, et al. Preparation and properties of electrospun flexible SiO2 nanofiber reinforced gas-phase SiO2 thermal insulation material[J]. China Ceramics, 2021, 57(12): 22-27 (in Chinese). [31] CHOI S S, CHU B, LEE S G, et al. Titania-doped silica fibers prepared by electrospinning and sol-gel process[J]. Journal of Sol-Gel Science and Technology, 2004, 30(3): 215-221. [32] 范燕生, 夏 磊. 离心纺丝的发展现状及前景[J]. 科技视界, 2017(6): 183. FAN Y S, XIA L. Development status and prospect of centrifugal spinning[J]. Science & Technology Vision, 2017(6): 183 (in Chinese). [33] HROMÁDKO L, KOUDELKOVÁ E, BULÁNEK R, et al. SiO2 fibers by centrifugal spinning with excellent textural properties and water adsorption performance[J]. ACS Omega, 2017, 2(8): 5052-5059. [34] LENG G Q, ZHANG X G, SHI T T, et al. Preparation and properties of polystyrene/silica fibres flexible thermal insulation materials by centrifugal spinning[J]. Polymer, 2019, 185: 121964. [35] ZENG J, WANG H, CHEN R, et al. Preparation of long-lasting electret fiber felt by centrifugal air-assisted spinning process and electret post-treatment[J]. AIP Advances, 2021, 11(7): 075325. [36] WEITZ R T, HARNAU L, RAUSCHENBACH S, et al. Polymer nanofibers via nozzle-free centrifugal spinning[J]. Nano Letters, 2008, 8(4): 1187-1191. [37] 张 铭, 吴丽莉, 陈 廷. 离心纺丝技术的新发展[J]. 产业用纺织品, 2021, 39(4): 1-5. ZHANG M, WU L L, CHEN T. New development of centrifugal spinning technology[J]. Technical Textiles, 2021, 39(4): 1-5 (in Chinese). [38] DADOL G C, KILIC A, TIJING L D, et al. Solution blow spinning (SBS) and SBS-spun nanofibers: materials, methods, and applications[J]. Materials Today Communications, 2020, 25: 101656. [39] WANG H L, ZHANG X A, WANG N, et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges[J]. Science Advances, 2017, 3(6): e1603170. [40] JIA C, LI L, LIU Y, et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances[J]. Nature Communications, 2020, 11: 3732. [41] 付鹏飞, 李树锋, 张 耀. 基于静电纺丝制备中空纳米纤维的研究进展[J]. 化工新型材料, 2023, 51(5): 30-33+41. FU P F, LI S F, ZHANG Y. Research progress of hollow nanofibers prepared by electrospinning[J]. New Chemical Materials, 2023, 51(5): 30-33+41 (in Chinese). [42] 董永全, 王 鸣, 李明俊, 等. 热塑性聚氨酯中空纤维/SiO2气凝胶隔热材料的制备及性能研究[J]. 陶瓷学报, 2011, 32(1): 32-36. DONG Y Q, WANG M, LI M J, et al. Study on preparation and performance of SiO2 aerogel insulating materials reinforced by thermoplastic polyurethane hollow fibers[J]. Journal of Ceramics, 2011, 32(1): 32-36 (in Chinese). [43] PANELS J E, JOO Y L. Incorporation of vanadium oxide in silica nanofiber mats via electrospinning and sol-gel synthesis[J]. Journal of Nanomaterials, 2006, 2006: 1-10. [44] CHENG Z W, SUN X, KONG J, et al. Thermal insulating properties of hollow mullite fibers prepared on a ceiba bio-template[J]. Open Ceramics, 2021, 6: 100112. [45] ZHANG H, LIU J L, ZHU S Z. Preparation and characterization of alumina-coated hollow quartz fiber reinforced Al2O3-SiO2 aerogel composite[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2022, 37(3): 324-330. [46] ZHANG B J, TONG Z W, PANG Y F, et al. Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation[J]. Composites Science and Technology, 2022, 218: 109152. [47] GBEWONYO S, CARPENTER A W, GAUSE C B, et al. Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure[J]. Materials & Design, 2017, 134: 218-225. [48] DU N, FAN J T, WU H J. Optimum porosity of fibrous porous materials for thermal insulation[J]. Fibers and Polymers, 2008, 9(1): 27-33. [49] WEN S Y, REN H B, ZHU J Y, et al. Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance[J]. Journal of Porous Materials, 2019, 26(4): 1027-1034. [50] PENG Y, XIE Y S, WANG L, et al. High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation[J]. Journal of the European Ceramic Society, 2021, 41(2): 1471-1480. [51] LI C N, ZHAO Z H, LIU Y K, et al. Preparation and characterization of Al2O3/SiO2 composite nanofibers by using electrostatic spinning method[J]. Inorganic and Nano-Metal Chemistry, 2017, 47(9): 1275-1278. [52] 唐文龙, 田春蓉, 贾晓蓉, 等. 硅酸铝纤维/酚醛树脂复合材料高温隔热性能研究[J]. 包装工程, 2016, 37(3): 30-35. TANG W L, TIAN C R, JIA X R, et al. High-temperature insulation properties of Al2(SiO3)3 fiber/phenolic resin composite material[J]. Packaging Engineering, 2016, 37(3): 30-35 (in Chinese). [53] 高 涵. 石英纤维增强复合材料的隔热性能研究[D]. 天津: 天津工业大学, 2019. GAO H. Study on thermal insulation performance of Shi Ying fiber reinforced composites[D]. Tianjin: Tianjin Polytechnic University, 2019 (in Chinese). [54] HE S, SUN G X, CHENG X D, et al. Nanoporous SiO2 grafted aramid fibers with low thermal conductivity[J]. Composites Science and Technology, 2017, 146: 91-98. [55] ZHUO T T, XIN B J, CHEN Z M, et al. Enhanced thermal insulation properties of PI nanofiber membranes achieved by doping with SiO2 nanoparticles[J]. European Polymer Journal, 2021, 153: 110489. [56] YU Y X, MA Q Y, ZHANG J B, et al. Electrospun SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds[J]. Applied Surface Science, 2020, 512: 145697. [57] LI Y T, GUO A R, XU X J, et al. Preparation and properties of highly elastic, lightweight, and thermally insulating SiO2 fibrous porous materials[J]. Materials, 2022, 15(9): 3069. [58] JIANG D, QIN J, ZHOU X, et al. Improvement of thermal insulation and compressive performance of Al2O3-SiO2 aerogel by doping carbon nanotubes[J]. Ceramics International, 2022, 48(11): 16290-16299. [59] DING Y, YANG L X, YANG M M, et al. Electrospinning of SiO2-based composites embedded TiO2 nanoparticles with ultra-strong suppression of radiative heat transfer[J]. Journal of Alloys and Compounds, 2023, 957: 170331. [60] LONG X, WEI X B, HU M, et al. Anisotropic and high-strength SiO2/cellulose nanofiber composite aerogel with thermal superinsulation and superhydrophobicity[J]. Ceramics International, 2023, 49(17): 28621-28628. [61] MORETTI E, BELLONI E, AGOSTI F. Innovative mineral fiber insulation panels for buildings: thermal and acoustic characterization[J]. Applied Energy, 2016, 169: 421-432. [62] 王 彬, 易忠新, 赵克秦, 等. 汽车排气管用玄武岩纤维隔热保温性能研究[J]. 内燃机与配件, 2022(19): 34-36. WANG B, YI Z X, ZHAO K Q, et al. Study on thermal insulation performance of basalt fiber for automobile exhaust pipe[J]. Internal Combustion Engine & Parts, 2022(19): 34-36 (in Chinese). [63] WANG K, FU C Y, XU A, et al. Skin-friendly and highly fireproof fabric up to 1 142 ℃ weaved by basalt @ polyimide yarns[J]. Composites Part B: Engineering, 2022, 246: 110238. [64] XUE R J, LIU G L, LIU F J. A simple and efficient method for the preparation of SiO2/PI/AF aerogel composite fabrics and their thermal insulation performance[J]. Ceramics International, 2023, 49(1): 210-215. [65] 任海涛, 贾 韬, 刘家臣, 等. 具有三维网络结构的莫来石纤维多孔隔热材料的制备及性能研究[J]. 航空科学技术, 2018, 29(4): 73-78. REN H T, JIA T, LIU J C, et al. Preparation and performance of mullite fiber porous insulation material with three-dimensional network structure[J]. Aeronautical Science & Technology, 2018, 29(4): 73-78 (in Chinese). [66] SHAO G F, WU X D, KONG Y, et al. Microstructure, radiative property and thermal shock behavior of TaSi2-SiO2-borosilicate glass coating for fibrous ZrO2 ceramic insulation[J]. Journal of Alloys and Compounds, 2016, 663: 360-370. [67] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 251-256. XUE Y J, LIU J C. Study on preparation, elasticity and thermal insulation of flexible fiber felt[J]. Materials Reports, 2023, 37(3): 251-256 (in Chinese). |
[1] | LIN Zhengxiang, TANG Xiaodan, YU Changsheng, BAI Zhipeng, ZHI Fangfang, JIN Weizhun, WANG Liang, JIANG Linhua. Effects of Humidity and Temperature on Electrical Conductivity of MXene Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3117-3124. |
[2] | ZHANG Pinle, DENG Rang, HU Jing, WU Lei, TAO Zhong. Flexural Performance of Steel-PVA Hybrid Fiber Engineered Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3125-3134. |
[3] | DENG Xianghui, ZHANG Peng, WANG Rui, WU Qiyuan, WANG Xu. Frost Resistance Durability and Damage Model of Fiber Concrete in Tibet Plateau Area [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3143-3153. |
[4] | ZHOU Wenjian, XUE Wen, XU Dan, LI Ying. Research on Basic Properties and Mechanism of Carya Cathayensis Peels Biochar Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3186-3195. |
[5] | CHEN Youzhi, WU Xiuqi, YIN Weisong, LI Wanmin, TANG Shichang. Effect of Calcium Carbide Residue on Mechanical Properties and Microstructure of Composite Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3196-3203. |
[6] | TONG Xiaogen, ZHANG Kaifeng, MENG Gang, ZHU Wangke, WANG Min, FU Wanzhang. Influence of Gold Tailing Composite Sand on Properties of Different Strength Grade Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3231-3239. |
[7] | HUANG Ronggui, TAO Zhong, WU Lei, SHEN Jinjin, XU Weijie. Effect of Polyvinyl Alcohol Fiber on Properties of Phosphorus Building Gypsum Matrix Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3258-3266. |
[8] | PENG Man, GAO Yongtao, HAN Yang, CHEN Xiuli, KOU Xiongjun. Experimental Study on Mechanical Properties of Scrap Steel Fiber Reinforced Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3286-3294. |
[9] | WU Huiqin, LIU Xingchi, CHEN Yuliang. Cyclic Compression Performance and Constitutive Relationship of Carbon Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2743-2753. |
[10] | WANG Ercheng, LI Gege, CHAI Yingke, ZHANG Hongchun, LI Yancang, WANG Yanjie. Fracture Performance of Steel-Sisal Hybrid Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2754-2763. |
[11] | GONG Mingzi, PAN Axin, ZHANG Zilong, WANG Tao, RAO Xianpeng, CHEN Chen, HUANG Wei. Pull-Out Behaviour of Steel Fiber in Ultra-High Performance Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2764-2772. |
[12] | WU Yechen, LYU Henglin, ZHANG Mingming, YAN Qiyao, YAN Hui, QI Chuankang. Freeze-Thaw Resistance of Composite Limestone Powder-Fly Ash-Slag Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2808-2820. |
[13] | LI Haijiao, WANG Jiajun, HAN Xiping, TAO Qi, ZHANG Shilong. Fatigue Resistance of Fiber Reinforced Lightweight Aggregate Concrete with High Content Mineral Admixture [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2856-2864. |
[14] | TIAN Yingliang, YUAN Zhichun, XU Bo, MU Guanghan, ZHAO Zhiyong. Effect of Clarifying Agent on Melting Process of Heat-Resistant Glass from Waste TFT-LCD Glass [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2928-2935. |
[15] | ZHAO Jinkai, WANG Hong, JIA Jinsheng, SUN Yong, KONG Zhuang, LIU Bo. Influence of Coating Temperature on Online Preparation and Tensile Properties of Zn Coated Silica Fiber [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2976-2984. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||