[1] 曹元辉, 王胜杰, 王 勇, 等. 我国建筑垃圾综合利用现状及未来发展趋势[J]. 中国建材, 2021, 70(9): 118-121. CAO Y H, WANG S J, WANG Y, et al. Present situation and future development trend of comprehensive utilization of construction waste in China[J]. China Building Materials, 2021, 70(9): 118-121 (in Chinese). [2] 张雅鑫. 我国建筑垃圾资源化处理产业发展现状[J]. 再生资源与循环经济, 2023, 16(4): 22-24. ZHANG Y X. Development situation of construction waste treatment industry[J]. Recyclable Resources and Circular Economy, 2023, 16(4): 22-24 (in Chinese). [3] 肖建庄, 陈立浩, 叶建军, 等. 混凝土结构拆除技术与绿色化发展[J]. 建筑科学与工程学报, 2019, 36(5): 1-10. XIAO J Z, CHEN L H, YE J J, et al. Technology and green development of demolition for concrete structures[J]. Journal of Architecture and Civil Engineering, 2019, 36(5): 1-10 (in Chinese). [4] 卢洪波, 廖清泉, 司常钧. 建筑垃圾处理与处置[M]. 郑州: 河南科学技术出版社, 2016. LU H B, LIAO Q Q, SI C J. Construction waste treatment and disposal[M]. Zhengzhou: Henan Science and Technology Press, 2016 (in Chinese). [5] ZHU P, MAO X Q, QU W J, et al. Investigation of using recycled powder from waste of clay bricks and cement solids in reactive powder concrete[J]. Construction and Building Materials, 2016, 113: 246-254. [6] 周长顺, 吉红波, 赵丽颖. 再生微粉在水泥基材料中的应用与研究进展[J]. 硅酸盐通报, 2019, 38(8): 2456-2463. ZHOU C S, JI H B, ZHAO L Y. Application and research progress of recycled micro-powders in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2456-2463 (in Chinese). [7] 田 青, 屈孟娇, 张 苗, 等. 废弃混凝土再生微粉激活方式研究进展[J]. 硅酸盐通报, 2020, 39(8): 2476-2485. TIAN Q, QU M J, ZHANG M, et al. Research progress on activation way of recycled powder of waste concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2476-2485 (in Chinese). [8] 王 程. 建筑垃圾复合粉体材料在公路半刚性基层材料中的应用研究[D]. 西安: 长安大学, 2017. WANG C. Study on application of construction waste composite powder material in highway semi-rigid base material[D]. Xi'an: Chang'an University, 2017 (in Chinese). [9] 胡 魁. 建筑垃圾高效分选关键技术及在公路工程中的应用研究[D]. 西安: 长安大学, 2017. HU K. Research on key technologies of efficient separation of construction waste and its application in highway engineering[D]. Xi'an: Chang'an University, 2017 (in Chinese). [10] WU H X, WANG C Q, MA Z M. Drying shrinkage, mechanical and transport properties of sustainable mortar with both recycled aggregate and powder from concrete waste[J]. Journal of Building Engineering, 2022, 49: 104048. [11] WANG L S, SHEN A Q, LYU Z H, et al. Rapid regeneration cement-stabilized macadam: preparation, mechanical properties, and dry shrinkage performance[J]. Construction and Building Materials, 2022, 341: 127901. [12] 龚建清, 杨 倩, 郭 丽, 等. 碱激发矿渣-玻璃粉基泡沫混凝土性能研究[J]. 硅酸盐通报, 2022, 41(1): 226-234. GONG J Q, YANG Q, GUO L, et al. Performance of alkali-activated slag-glass powder based foamed concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 226-234 (in Chinese). [13] WANG L, WANG J L, WANG H, et al. Eco-friendly treatment of recycled concrete fines as supplementary cementitious materials[J]. Construction and Building Materials, 2022, 322: 126491. [14] YE T H, XIAO J Z, DUAN Z H, et al. Geopolymers made of recycled brick and concrete powder: a critical review[J]. Construction and Building Materials, 2022, 330: 127232. [15] MA Z M, SHEN J X, WU H X, et al. Properties and activation modification of eco-friendly cementitious materials incorporating high-volume hydrated cement powder from construction waste[J]. Construction and Building Materials, 2022, 316: 125788. [16] SUN Y, LI L, LIAO J, et al. Dry shrinkage performance of cement-stabilized reclaimed lime-fly ash macadam[J]. Construction and Building Materials, 2022, 331: 127332. [17] CHEN X T, ZHU P H, YAN X C, et al. Effect of high temperature curing on the frost resistance of recycled aggregate concrete and the physical properties of second-generation recycled coarse aggregate under freeze-thaw cycles[J]. Journal of Renewable Materials, 2023, 11(6): 2953-2967. [18] LIU Y, PENG P. Study on interface characteristics and frost resistance of recycled concrete[J]. E3S Web of Conferences, 2019, 79: 02004. [19] 张 卉, 潘慧敏, 石雨轩, 等. 粉煤灰渣替代细骨料对砂浆混凝土强度及抗冻性影响[J]. 硅酸盐通报, 2022, 41(2): 433-440+449. ZHANG H, PAN H M, SHI Y X, et al. Influence of fly ash slag substitution of fine aggregate on strength and frost resistance of mortar concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 433-440+449 (in Chinese). [20] 王 辉, 谢祥兵, 王凯威, 等. 再生复合微粉活性评价及其对胶砂强度影响因素分析[J]. 新型建筑材料, 2022, 49(8): 133-137+150. WANG H, XIE X B, WANG K W, et al. Activity evaluation of regenerated composite micropowder and analysis of its influencing factors on mortar strength[J]. New Building Materials, 2022, 49(8): 133-137+150 (in Chinese). [21] 田小革, 于 水, 李光耀, 等. 不同措施对水泥稳定碎石混合料性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2235-2243. TIAN X G, YU S, LI G Y, et al. Influence of different measures on properties of cement stabilized macadam mixture[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2235-2243 (in Chinese). [22] 中华人民共和国交通运输部. 公路工程无机结合料稳定材料试验规程: JTG E51—2009[S]. 北京: 人民交通出版社, 2009. Ministry of Transportation and Communications of the People's Republic of China. Test specification for inorganic binding material stabilizing material for highway engineering: JTG E51—2009[S]. Beijing: China Communications Press, 2009 (in Chinese). [23] AISHWARYA R, RACHEL P. Comparative study on optimum moisture content and maximum dry density of sandy clay soil with basalt reinforced sandy clay soil[J]. Materials Today: Proceedings, 2023, 77: 557-562. [24] LI J B, GENG H, ZHANG G R, et al. Influence of silt content on shear strength of sandy soil[J]. IOP Conference Series: Earth and Environmental Science, 2021, 768(1): 012088. [25] YANG Z Q, XUE Y J, WANG L, et al. Field large-scale relative density tests of gravel soil of Yulongkashi high earth-rock fill dam[C]. Proceedings of the 2018 7th International Conference on Energy and Envir-onmental Protection (ICEEP 2018), 2018. [26] 王鹏飞, 郭忠印, 陈崇驹. 基于正交法的水泥稳定碎石试验及抗裂性能研究[J]. 建筑材料学报, 2007, 10(5): 616-621. WANG P F, GUO Z Y, CHEN C J. Research on cement stabilized macadam based on orthogonal method and anti-cracking performance[J]. Journal of Building Materials, 2007, 10(5): 616-621 (in Chinese). [27] 黄祯敏, 肖 敏, 彭 波, 等. 基于细集料填充系数的水泥稳定碎石性能研究[J]. 公路, 2017, 62(3): 29-35. HUANG Z M, XIAO M, PENG B, et al. Study of cement stabilized macadam properties based on fine aggregate filling coefficient[J]. Highway, 2017, 62(3): 29-35 (in Chinese). [28] 付春梅, 齐善忠, 贾春燕. 聚酯纤维水泥稳定碎石抗干缩性能研究[J]. 公路, 2014, 59(11): 188-193. FU C M, QI S Z, JIA C Y. Study on dry shrinkage resistance of polyester fiber cement stabilized macadam[J]. Highway, 2014, 59(11): 188-193 (in Chinese). [29] LIU Y W, SHI C J, ZHANG Z H, et al. An overview on the reuse of waste glasses in alkali-activated materials[J]. Resources, Conservation and Recycling, 2019, 144: 297-309. [30] 于 蕾. 水泥混凝土的微观性能[M]. 北京: 中国建筑工业出版社, 2017. YU L. Microscopic properties of cement concrete[M]. Beijing: China Construction Industry Press, 2017 (in Chinese). [31] 何小芳, 缪昌文. 界面过渡区对水泥基材料氯离子扩散性能的影响研究[J]. 东南大学学报(自然科学版), 2009, 39(增刊2): 268-273. HE X F, MIAO C W. Influence of interfacial transition zone to chloride diffusibility of cemented materials[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(supplement 2): 268-273 (in Chinese). [32] 张 平, 古龙龙, 李 凯, 等. 再生微粉混凝土抗冻性及抗硫酸盐侵蚀性能研究[J]. 混凝土与水泥制品, 2020(3): 27-30. ZHANG P, GU L L, LI K, et al. Study on frost resistance and sulfate resistance of concrete with recycled fine powder[J]. China Concrete and Cement Products, 2020(3): 27-30 (in Chinese). |