[1] 王万里, 王宝民, 艾红梅, 等. 铝硅酸盐基地质聚合物制备工艺研究进展[J]. 混凝土, 2022(6): 80-84. WANG W L, WANG B M, AI H M, et al. Research progress on preparation technology of aluminosilicate base geopolymer[J]. Concrete, 2022(6): 80-84 (in Chinese). [2] ZHANG D W, WANG D M, LI H. Mechanical properties of fly ash-slag based alkali-activated materials under the low-energy consummation-sealed curing condition[J]. Journal of Materials in Civil Engineering, 2021, 33(10): 04021288. [3] DING Y, SHI C J, LI N. Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature[J]. Construction and Building Materials, 2018, 190: 787-795. [4] 邓晓轩, 纪宪坤, 田均兵, 等. 矿渣在尾砂胶结充填中的应用与研究进展[J]. 材料导报, 2016, 30(5): 95-100. DENG X X, JI X K, TIAN J B, et al. Application and research progress of slag in cemented filling of tailings[J]. Materials Review, 2016, 30(5): 95-100 (in Chinese). [5] 郝书研, 万小梅, 韩序康, 等. 碱矿渣胶凝材料改性手段及相关机理研究进展[J]. 混凝土, 2021(8): 91-95. HAO S Y, WAN X M, HAN X K, et al. Progress on modification methods and research on related mechanism of alkali activated slag cementitious materials[J]. Concrete, 2021(8): 91-95 (in Chinese). [6] 黄小川, 刘长江, 王梦斐, 等. 地聚物的性能影响因素研究及其应用进展综述[J]. 人民长江, 2021, 52(1): 158-166. HUANG X C, LIU C J, WANG M F, et al. Review on research of factors affecting geopolymers performance and advances in geopolymers applications[J]. Yangtze River, 2021, 52(1): 158-166 (in Chinese). [7] 龙震宇, 袁 怡. 电石渣改性固体废弃物胶固粉的制备及性能研究[J]. 功能材料, 2023, 54(1): 1171-1175. LONG Z Y, YUAN Y. Study on preparation and properties of solid waste cement powder modified by carbide slag[J]. Journal of Functional Materials, 2023, 54(1): 1171-1175 (in Chinese). [8] ALVENTOSA K M L, WILD B, WHITE C E. The effects of calcium hydroxide and activator chemistry on alkali-activated metakaolin pastes exposed to high temperatures[J]. Cement and Concrete Research, 2022, 154: 106742. [9] ADESINA A. Influence of various additives on the early age compressive strength of sodium carbonate activated slag composites: an overview[J]. Journal of the Mechanical Behavior of Materials, 2020, 29(1): 106-113. [10] 王旭影, 乔京生, 赵建业, 等. 电石渣激发钢渣-矿渣固化淤泥质土的试验研究[J]. 硅酸盐通报, 2022, 41(2): 733-739. WANG X Y, QIAO J S, ZHAO J Y, et al. Solidification of muddy soil with steel slag and ground granulated blast-furnace slag activated by calcium carbide slag[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 733-739 (in Chinese). [11] 贺行洋, 郑正旗, 苏 英, 等. 电石渣激发磷渣-矿渣-水泥复合胶凝材料的性能研究[J]. 硅酸盐通报, 2019, 38(3): 889-895. HE X Y, ZHENG Z Q, SU Y, et al. Study on the properties of phosphorous slag-blast furnace slag-cement composite cementitious materials activated by acetylene slag[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 889-895 (in Chinese). [12] 万宗华, 张文芹, 刘志超, 等. 电石渣-矿渣复合胶凝材料性能研究[J]. 硅酸盐通报, 2022, 41(5): 1704-1714. WAN Z H, ZHANG W Q, LIU Z C, et al. Properties of carbide slag-slag composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1704-1714 (in Chinese). [13] 张建辉, 赵嘉鑫, 陈继才, 等. 碱激发磷渣基胶凝材料的性能及微观结构分析[J]. 硅酸盐通报, 2019, 38(9): 2992-2998. ZHANG J H, ZHAO J X, CHEN J C, et al. Performance and microstructure analysis of alkali-activated phosphorous slag based cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2992-2998 (in Chinese). [14] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Mechanism of calcium carbide slag activating slag-fly ash composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [15] 徐玲琳, 欧阳军, 杨 肯, 等. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 92-96. XU L L, OUYANG J, YANG K, et al. Impacts of curing temperature on the hydration of slag-calcium sulfoaluminate cement[J]. Materials Reports, 2023, 37(11): 92-96 (in Chinese). [16] 何彤彤. 碱激发矿渣的碳化性能研究[D]. 南京: 东南大学, 2018. HE T T. Study on carbonation performance of alkali-activated slag[D].Nanjing: Southeast University, 2018 (in Chinese). [17] 郑晓惠. 受热条件下水化硅酸钙的结构变化及再水化特性[D]. 武汉: 武汉理工大学, 2018. ZHENG X H. Structural changes and rehydration characteristics of hydrated calcium silicate under heating conditions[D].Wuhan: Wuhan University of Technology, 2018 (in Chinese). [18] 高英力, 孟 浩, 万红伟, 等. 电石渣碱激发矿渣/粉煤灰胶凝材料性能及微结构[J]. 中南大学学报(自然科学版), 2023, 54(5): 1739-1747. GAO Y L, MENG H, WAN H W, et al. Properties and microstructure of alkali-activated cementitious materials prepared with carbide slag-slag-fly ash solid waste[J]. Journal of Central South University (Science and Technology), 2023, 54(5): 1739-1747 (in Chinese). [19] 吕毅刚, 王世玉, 戈娅萍, 等. 矿渣掺量对偏高岭土基地聚物孔溶液碱度和地质聚合行为的影响[J]. 中南大学学报(自然科学版), 2021, 52(12): 4434-4442. LÜ Y G, WANG S Y, GE Y P, et al. Influence of slag content on alkalinity of pore solution and polymerization behavior of metakaolin-based geopolymer[J]. Journal of Central South University (Science and Technology), 2021, 52(12): 4434-4442 (in Chinese). [20] 万小梅, 刘国强, 赵铁军, 等. C-(A)-S-H对氯离子的吸附性能研究[J]. 建筑材料学报, 2019, 22(1): 31-37. WAN X M, LIU G Q, ZHAO T J, et al. Investigation on adsorption behavior of chloride by calcium silicate hydrate and calcium aluminum silicate hydrate[J]. Journal of Building Materials, 2019, 22(1): 31-37 (in Chinese). [21] 杨 军, 张高展, 丁庆军, 等. 铝掺杂水化硅酸钙的分子结构和力学性能[J]. 建筑材料学报, 2022, 25(6): 565-571+584. YANG J, ZHANG G Z, DING Q J, et al. Molecular structure and mechanical properties of aluminum substituted C-S-H[J]. Journal of Building Materials, 2022, 25(6): 565-571+584 (in Chinese). [22] 刘继中, 赵庆新, 张津瑞, 等. 碱渣-矿渣复合胶凝材料硬化体的微观结构与组成[J]. 建筑材料学报, 2019, 22(6): 872-877. LIU J Z, ZHAO Q X, ZHANG J R, et al. Microstructure and composition of hardened paste of soda residue-slag complex binding materials[J]. Journal of Building Materials, 2019, 22(6): 872-877 (in Chinese). [23] LIU J, XIE G M, WANG Z D, et al. Synthesis of geopolymer using municipal solid waste incineration fly ash and steel slag: hydration properties and immobilization of heavy metals[J]. Journal of Environmental Management, 2023, 341: 118053. [24] JEFFREY W. B, Hamlin M. J, Richard A. L, et al. Mechanisms of cement hydration[J]. Cement and Concrete Research, 2011, 41: 1208-1223. [25] ZHANG Z, ZHAO C T, RAO Y, et al. Solidification/stabilization and risk assessment of heavy metals in municipal solid waste incineration fly ash: a review[J]. Science of the Total Environment, 2023, 892: 164451. [26] KONG D L Y, SANJAYAN J G. Effect of elevated temperatures on geopolymer paste, mortar and concrete[J]. Cement and Concrete Research, 2010, 40(2): 334-339. [27] SHI C, ZHANG G, HE T S, et al. Effects of superplasticizers on the stability and morphology of ettringite[J]. Construction and Building Materials, 2016, 112: 261-266. [28] ALAHRACHE S, WINNEFELD F, CHAMPENOIS J B, et al. Chemical activation of hybrid binders based on siliceous fly ash and Portland cement[J]. Cement and Concrete Composites, 2016, 66: 10-23. [29] ZHUANG X Y, CHEN L, KOMARNENI S, et al. Fly ash-based geopolymer: clean production, properties and applications[J]. Journal of Cleaner Production, 2016, 125: 253-267. [30] 任鹏程, 郑和平, 金祖权, 等. 地热环境下AFt和AFm的转化机制[J]. 硅酸盐通报, 2023, 42(5): 1551-1560. REN P C, ZHENG H P, JIN Z Q, et al. Transformation mechanism of AFt and AFm in geothermal environment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1551-1560 (in Chinese). |