[1] ZHANG J, SHI C J, ZHANG Z H, et al. Durability of alkali-activated materials in aggressive environments: a review on recent studies[J]. Construction and Building Materials, 2017, 152: 598-613. [2] 郭勉惠, 陈远超. 碱激发胶凝材料风化抑制的研究现状[J]. 居舍, 2022(32): 40-42. GUO M H, CHEN Y C. Research status of weathering inhibition of alkali-activated cementitious materials[J]. A Dwelling, 2022(32): 40-42 (in Chinese). [3] SRINIVASAMURTHY L, CHEVALI V S, ZHANG Z H, et al. Phase changes under efflorescence in alkali activated materials with mixed activators[J]. Construction and Building Materials, 2021, 283: 122678. [4] CAPPELLETTI G, FERMO P, PINO F, et al. On the role of hydrophobic Si-based protective coatings in limiting mortar deterioration[J]. Environmental Science and Pollution Research, 2015, 22(22): 17733-17743. [5] XUE X, LIU Y L, DAI J G, et al. Inhibiting efflorescence formation on fly ash-based geopolymer via silane surface modification [J]. Cement and Concrete Composites, 2018, 94: 43-52. [6] MAGHSOODLOORAD H, ALLAHVERDI A. Efflorescence formation and control in alkali-activated phosphorus slag cement[J]. International Journal of Civil Engineering, 2016, 14(6): 425-438. [7] ZHANG Z H, PROVIS J L, REID A, et al. Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence[J]. Cement and Concrete Research, 2014, 64: 30-41. [8] LONGHI M A, ZHANG Z H, WALKLEY B, et al. Strategies for control and mitigation of efflorescence in metakaolin-based geopolymers[J]. Cement and Concrete Research, 2021, 144: 106431. [9] NAJAFI K E, ALLAHVERDI A, PROVIS J L. Efflorescence control in geopolymer binders based on natural pozzolan[J]. Cement and Concrete Composites, 2012, 34(1): 25-33. [10] HE P G, WANG M R, FU S, et al. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer[J]. Ceramics International, 2016, 42(13): 14416-14422. [11] SUN K K, PENG X Q, WANG S P, et al. Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar[J]. Construction and Building Materials, 2020, 253: 118952. [12] LONGHI M A, RODRÍGUEZ E D, WALKLEY B, et al. Metakaolin-based geopolymers: relation between formulation, physicochemical properties and efflorescence formation[J]. Composites Part B: Engineering, 2020, 182: 107671. [13] 申少华, 李爱玲, 张术根, 等. A型沸石的水热制备及生长机制研究[J]. 硅酸盐学报, 2003, 31(8): 732-737. SHEN S H, LI A L, ZHANG S G, et al. Hydrothermal preparation of zeolite a and its growth mechanism[J]. Journal of the Chinese Ceramic Society, 2003, 31(8): 732-737 (in Chinese). [14] 喻 岚, 徐冰峰, 庹婧艺, 等. 改性沸石处理氨氮废水的研究进展[J]. 工业安全与环保, 2021, 47(9): 88-92. YU L, XU B F, TUO J Y, et al. Research progress on treatment of ammonia nitrogen wastewater by modified zeolite[J]. Industrial Safety and Environmental Protection, 2021, 47(9): 88-92 (in Chinese). [15] 安金鹏, 卢忠远, 严 云. 沸石改性粉煤灰地聚物水泥固化材料的研究[J]. 核化学与放射化学, 2008, 30(3): 134-141. AN J P, LU Z Y, YAN Y. Fly ash based geopolymers solidification material modified by blending with natural zeolite[J]. Journal of Nuclear and Radiochemistry, 2008, 30(3): 134-141 (in Chinese). [16] GUO L, WU Y Y, XU F, et al. Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites[J]. Composites Part B: Engineering, 2020, 183: 107689. [17] 傅 博, 程臻赟, 韩静云, 等. 碱偏高岭土矿渣地聚合物砂浆强度及新拌性能研究[J]. 硅酸盐通报, 2019, 38(12): 4013-4020. FU B, CHENG Z Y, HAN J Y, et al. Strength and fresh properties of alkali activated metakaolin slag geopolymer mortar[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 4013-4020 (in Chinese). [18] 高黎明, 王永宝, 郭天天, 等. 偏高岭土地聚物力学性能研究进展[J]. 混凝土, 2022(2): 116-120+126. GAO L M, WANG Y B, GUO T T, et al. Research status of mechanical properties of metakaolin geopolymer[J]. Concrete, 2022(2): 116-120+126 (in Chinese). [19] 廉慧珍. 沸石岩火山灰活性的研究[J]. 硅酸盐学报, 2002, 30(4): 411-416. LIAN H Z. Studies on pozzolanic activity of zeolite-tuff[J]. Journal of the Chinese Ceramic Society, 2002, 30(4): 411-416 (in Chinese). [20] WANG J B, LI F S, ZHOU Z H, et al. Effect of zeolite on waste based alkali-activated inorganic binder efflorescence[J]. Construction and Building Materials, 2018, 158: 683-690. [21] TEMUUJIN J, VAN R A, WILLIAMS R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 82-88. [22] ISLAM M S, MOHR B, VANDENBERGE D. Performance of natural clinoptilolite zeolite in the cementitious materials: a comparative study with metakaolin, fly ash, and blast furnace slag[J]. Journal of Building Engineering, 2022, 53: 104535. [23] YIP C K, LUKEY G C, PROVIS J L, et al. Effect of calcium silicate sources on geopolymerisation[J]. Cement and Concrete Research, 2008, 38(4): 554-564. [24] 何 月, 李星辰, 丁 锐. 碱激发胶凝材料的进展[J]. 北方建筑, 2020, 5(4): 47-51. HE Y, LI X C, DING R. Progress of alkali-activated cementitious materials[J]. Northern Architecture, 2020, 5(4): 47-51 (in Chinese). [25] HUANG Y, HAN M F, YI R R. Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler[J]. Construction and Building Materials, 2012, 33: 84-89. [26] 高 亚, 李玉香, 马 雪, 等. 模拟高盐高碱低中水平放射性废液水泥固化工艺的研究[J]. 辐射防护, 2014, 34(4): 218-223. GAO Y, LI Y X, MA X, et al. Cement solidification of simulated high saline-alkali low and intermediate-low level radioactive liquid waste[J]. Radiation Protection, 2014, 34(4): 218-223 (in Chinese). [27] HUANG X, HU S G, WANG F Z, et al. Properties of alkali-activated slag with addition of cation exchange material[J]. Construction and Building Materials, 2017, 146: 321-328. [28] 刘 岩, 叶涛萍, 曹万林. 地聚物混凝土结构研究与发展[J]. 自然灾害学报, 2020, 29(4): 8-19. LIU Y, YE T P, CAO W L. Research and development of geopolymer concrete structure[J]. Journal of Natural Disasters, 2020, 29(4): 8-19 (in Chinese). [29] ODLER I, RÖßLER M. Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration[J]. Cement and Concrete Research, 1985, 15(3): 401-410. [30] 谈云志, 柯 睿, 陈君廉, 等. 偏高岭土增强石灰-水泥固化淤泥的耐久性研究[J]. 岩土力学, 2020, 41(4): 1146-1152. TAN Y Z, KE R, CHEN J L, et al. Enhancing durability of lime-cement solidified sludge with metakaolin[J]. Rock and Soil Mechanics, 2020, 41(4): 1146-1152 (in Chinese). [31] XU W T, LO Y T, OUYANG D, et al. Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste[J]. Construction and Building Materials, 2015, 89: 90-101. [32] LI Z, LIU L L, YAN S H, et al. Properties of microscopic particle morphology and particle contact of renewable construction waste mixtures[J]. Construction and Building Materials, 2019, 207: 190-205. |