[1] 王仕富, 曾晓辉, 周 尧, 等. PVA及玄武岩纤维对水泥基复合材料力学性能的影响[J]. 功能材料, 2020, 51(4): 4072-4076. WANG S F, ZENG X H, ZHOU Y, et al. Effect of PVA and basalt fiber on mechanical properties of cement-based composites[J]. Journal of Functional Materials, 2020, 51(4): 4072-4076 (in Chinese). [2] WANG Z B, ZHANG J, WANG J H, et al. Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio[J]. Journal of Composite Materials, 2015, 49(18): 2169-2186. [3] 许子龙, 谢 群. 混杂纤维增强高韧性水泥基复合材料的拉伸性能[J]. 济南大学学报(自然科学版), 2021, 35(1)68-73 XU Z L, XIE Q. Tensile properties of mixed fibers reinforced high toughness cement-based composites[J]. Journal of University of Jinan (Science and Technology), 2021, 35(1): 68-73 (in Chinese). [4] BANTHIA N, GUPTA R. Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices[J]. Materials and Structures, 2004, 37(10): 707-716. [5] 刘雁宁, 张 涛, 李 杉. 混掺精细钢纤维/PVA纤维水泥基复合材料力学性能试验研究[J]. 混凝土, 2022(1): 112-115. LIU Y N, ZHANG T, LI S. Experimental study on mechanical behviour of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composites[J]. Concrete, 2022(1): 112-115 (in Chinese). [6] KANG S T, CHOI J I, KOH K T, et al. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete[J]. Composite Structures, 2016, 145: 37-42. [7] 霍彦霖, 孙华阳, 刘天安, 等. 混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J]. 复合材料学报, 2022, 39(11): 5086-5097. HUO Y L, SUN H Y, LIU T A, et al. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5086-5097 (in Chinese). [8] 赵焕起, 李国忠. 混杂纤维增强水泥基复合材料的力学性能[J]. 复合材料学报, 2014, 31(1): 140-145. ZHAO H Q, LI G Z. Mechanics performance of hybrid fiber reinforced cement-based composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 140-145 (in Chinese). [9] 于海洋, 李地红, 代函函, 等. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(增刊1): 229-233. YU H Y, LI D H, DAI H H, et al. Study on bending properties of hybrid fiber reinforced strain hardening cementitious composites[J]. Materials Reports, 2020, 34(supplement 1): 229-233 (in Chinese). [10] WANG Z H, GUO R X, LIU G S, et al. Study on flexural fatigue properties of POM fiber airport pavement concrete[J]. Polymers, 2022, 14(15): 2979. [11] 贺晶晶, 师俊平, 张 勇, 等. 玄武岩纤维改善混凝土拉伸性能分析[J]. 复合材料科学与工程, 2021(8): 39-43. HE J J, SHI J P, ZHANG Y, et al. Analysis on tensile properties of BFRC[J]. Composites Science and Engineering, 2021(8): 39-43 (in Chinese). [12] 吴耀鹏, 李彦豪, 张 旭, 等. 水胶比和粉煤灰掺量对混凝土高温后抗压强度的影响[J]. 建筑结构, 2019, 49(22): 93-96. WU Y P, LI Y H, ZHANG X, et al. Influences of water-binder ratio and fly-ash replacement level on compressive strength of concrete after high temperature[J]. Building Structure, 2019, 49(22): 93-96 (in Chinese). [13] 姚智高, 林 常, 蔡 舒, 等. 粉煤灰对PVA纤维/水泥基体界面作用及复合材料拉伸性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2327-2336. YAO Z G, LIN C, CAI S, et al. Effect of fly ash on PVA fiber/cementitious matrix interfacial interactions and tensile properties of composites[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2327-2336 (in Chinese). [14] 何文敏, 张学钢, 王 闯. BFRC中玄武岩纤维的分散性与胶砂流动性[J]. 材料导报, 2013, 27(8): 124-126+151. HE W M, ZHANG X G, WANG C. Fluidity of cement mortar and dispersion of basalt fiber of BFRC[J]. Materials Review, 2013, 27(8): 124-126+151 (in Chinese). [15] 路建国, 杨心莲, 蒲万丽, 等. 寒区导电混凝土研究现状与展望[J]. 土木与环境工程学报, 2023: 1-13. LU J G, YANG X L, PU W L, et al. Current status and prospects of research on conductive concrete in cold regions[J]. Journal of Civil and Environmental Engineering, 2023: 1-13 (in Chinese). [16] 李福海, 高 浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419-427. LI F H, GAO H, TANG H Q, et al. Basic properties and shrinkage model of chopped basalt fiber concrete[J]. Journal of Railway Science and Engineering, 2022, 19(2): 419-427 (in Chinese). [17] 张 聪, 曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3): 661-668. ZHANG C, CAO M L. Mechanical property test of a multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 661-668 (in Chinese). [18] 邓 双, 袁进平, 靳建洲, 等. 多尺度纤维增强水泥基材料的研究进展[J]. 硅酸盐通报, 2016, 35(4)1137-1143 DENG S, YUAN J P, JIN J Z, et al. Multi-scale fiber reinforced cement based materials[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(4): 1137-1143 (in Chinese). [19] 吴启一, 姚华彦, 扈惠敏, 等. 玄武岩纤维对水泥稳定多孔玄武岩碎石力学性能的影响[J]. 硅酸盐通报, 2022, 41(1): 192-198. WU Q Y, YAO H Y, HU H M, et al. Effect of basalt fiber on mechanical properties of cement stabilized porous basalt macadam[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 192-198 (in Chinese). [20] LIN J X, SU J Y, PAN H S, et al. Dynamic compression behavior of ultra-high performance concrete with hybrid polyoxymethylene fiber and steel fiber[J]. Journal of Materials Research and Technology, 2022, 20: 4473-4486. [21] 余保英, 周建伟, 孔亚宁, 等. PVA纤维长度对超高韧性水泥基复合材料力学性能的影响[J]. 硅酸盐通报, 2020, 39(11): 3425-3431. YU B Y, ZHOU J W, KONG Y N, et al. Effect of PVA fiber length on mechanical properties of ultra-high toughness cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3425-3431 (in Chinese). [22] 张兰芳, 尹玉龙, 岳 瑜. 玄武岩纤维掺量对混凝土力学性能的影响[J]. 硅酸盐通报, 2016, 35(9)2724-2728 ZHANG L F, YIN Y L, YUE Y. Effect of basalt fiber content on mechanical performance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2724-2728 (in Chinese). [23] 张楚楚. 玄武岩纤维增强水泥基材料及其复合梁高性能化研究[D]. 南京: 东南大学, 2018: 18-20. ZHANG C C. Study on high performance of basalt fiber reinforced cement-based materials and their composite beams[D]. Nanjing: Southeast University, 2018: 18-20 (in Chinese). [24] 杨富花, 石宵爽, 栾晨晨, 等. 聚甲醛纤维增强地聚物再生混凝土的力学性能研究[J]. 新型建筑材料, 2021, 48(5)52-56+70 YANG F H, SHI X S, LUAN C C, et al. Study on the mechanical properties of polyoxymethylene fiber reinforced geopolymer recycled concrete[J]. New Building Materials, 2021, 48(5): 52-56+70 (in Chinese). [25] 张 勤, 巩稣稣, 赵永胜, 等. 多尺度纤维复合增强水泥基材料的力学性能[J]. 土木与环境工程学报(中英文), 2021(2): 123-129. ZHANG Q, GONG S S, ZHAO Y S, et al. Mechanical properties of multi-scale fiber compound reinforced cement-based materials[J]. Journal of Civil and Environmental Engineering, 2021(2): 123-129 (in Chinese). [26] ZHAO W W, WANG Y T, WANG X D, et al. Fabrication, mechanical performance and tribological behaviors of polyacetal-fiber-reinforced metakaolin-based geopolymeric composites[J]. Ceramics International, 2016, 42(5): 6329-6341. [27] ZHANG J C, LIU T X, DONG B, et al. Experimental investigation of mechanical characterizations of a POM fiber-reinforced mortar material[J]. Frontiers in Physics, 2022, 10: 837355. [28] Japan Concrete Institute. Method of test for flexural strength and flexural toughness of steel fiber reinforced concrete: JSCE-SF4[S]. Tokyo: Japan Concrete Institute, 1984. [29] 李风雷, 孙 敏. PVA-钢混杂纤维混凝土弯曲韧性研究[J]. 苏州科技学院学报(工程技术版), 2017, 30(1): 19-25. LI F L, SUN M. Test and reseach on bending toughness of steel-PVA hybrid fibers concrete[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2017, 30(1): 19-25 (in Chinese). [30] DEY V, KACHALA R, BONAKDAR A, et al. Mechanical properties of micro and sub-micron wollastonite fibers in cementitious composites[J]. Construction and Building Materials, 2015, 82: 351-359. [31] ZHANG W, XU X, WANG H L, et al. Experimental and numerical analysis of interfacial bonding strength of polyoxymethylene reinforced cement composites[J]. Construction and Building Materials, 2019, 207: 1-9. [32] 裴 悦. 掺入玻璃纤维及玄武岩纤维增强混凝土性能的试验研究[D]. 太原: 中北大学, 2019: 44-46. PEI Y. Experimental study on properties of concrete reinforced with glass fiber and basalt fiber[D]. Taiyuan: North University of China, 2019: 44-46 (in Chinese). |