BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (8): 2687-2701.
• Ceramics • Previous Articles Next Articles
YUAN Qi1,2, TAN Hua1,2,3, YANG Tingwang4, LU Wenlong4, ZANG Jiadong4, LI Haoyu4, YAN Wenchao4, ZHANG Shengwei4, LU Ya1,2, ZHANG Haibo1,2,3
Received:
2021-04-28
Revised:
2021-07-23
Online:
2021-08-15
Published:
2021-09-02
CLC Number:
YUAN Qi, TAN Hua, YANG Tingwang, LU Wenlong, ZANG Jiadong, LI Haoyu, YAN Wenchao, ZHANG Shengwei, LU Ya, ZHANG Haibo. Preparation Methods and Research Status of Porous Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2687-2701.
[1] OHJI T, FUKUSHIMA M. Macro-porous ceramics: processing and properties[J]. International Materials Reviews, 2012, 57(2): 115-131. [2] NANJANGUD S C, BREZNY R, GREEN D J. Strength and Young's modulus behavior of a partially sintered porous alumina[J]. Journal of the American Ceramic Society, 1995, 78(1): 266-268. [3] HARDY D, GREEN D J. Mechanical properties of a partially sintered alumina[J]. Journal of the European Ceramic Society, 1995, 15(8): 769-775. [4] BERGIN A, VOIGT C, FRITZSCH R, et al. Experimental study on the chemical stability of phosphate-bonded Al2O3-based ceramic foam filters (CFFs)[J]. Metallurgical and Materials Transactions B, 2021, 52(4): 2008-2025. [5] GONCHARUK V V, OGENKO V M, KUCHERUK D D, et al. Water purification by microfiltration ceramic membranes modified with pyrocarbon and silica[J]. Journal of Water Chemistry and Technology, 2019, 41(4): 248-252. [6] DENG Z Y, FUKASAWA T, ANDO M, et al. High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3[J]. Journal of the American Ceramic Society, 2001, 84(3): 485-491. [7] DENG Z Y, FUKASAWA T, ANDO M, et al. Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide[J]. Journal of the American Ceramic Society, 2001, 84(11): 2638-2644. [8] CLAUSSEN N, WU S X, HOLZ D. Reaction bonding of aluminum oxide (RBAO) composites: processing, reaction mechanisms and properties[J]. Journal of the European Ceramic Society, 1994, 14(2): 97-109. [9] LIU J J, REN B, RONG Y D, et al. Highly porous alumina cellular ceramics bonded by in situ formed mullite prepared by gelation-assisted Al2O3-Si particle-stabilized foams[J]. Ceramics International, 2020, 46(8): 12282-12287. [10] SUZUKI Y, MORGAN P E D, OHJI T. New uniformly porous CaZrO3/MgO composites with three-dimensional network structure from natural dolomite[J]. Journal of the American Ceramic Society, 2000, 83(8): 2091-2093. [11] SUZUKI Y, KONDO N, OHJI T, et al. Uniformly porous composites with 3-D network structure (UPC-3D) for high-temperature filter applications[J]. International Journal of Applied Ceramic Technology, 2005, 1(1): 76-85. [12] SUZUKI Y, AWANO M, KONDO N, et al. CH4-sensing and high-temperature mechanical properties of porous CaZrO3/MgO composites with three-dimensional network structure[J]. Journal of the Ceramic Society of Japan, 2001, 109(1265): 79-81. [13] SUZUKI Y, KONDO N, OHJI T. Reactive synthesis of a porous calcium zirconate/spinel composite with idiomorphic spinel grains[J]. Journal of the American Ceramic Society, 2003, 86(7): 1128-1131. [14] SHE J H, YANG J F, KONDO N, et al. High-strength porous silicon carbide ceramics by an oxidation-bonding technique[J]. Journal of the American Ceramic Society, 2002, 85(11): 2852-2854. [15] DING S Q, ZENG Y P, JIANG D L. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant[J]. Materials Letters, 2007, 61(11/12): 2277-2280. [16] DEY A, KAYAL N, CHAKRABARTI O, et al. Evaluation of air permeation behavior of porous SiC ceramics synthesized by oxidation-bonding technique[J]. International Journal of Applied Ceramic Technology, 2013, 10(6): 1023-1033. [17] BUKHARI S Z A, HA J H, LEE J, et al. Oxidation-bonded SiC membrane for microfiltration[J]. Journal of the European Ceramic Society, 2018, 38(4): 1711-1719. [18] CECEN B, TOPATES G, KARA A, et al. Biocompatibility of silicon nitride produced via partial sintering & tape casting[J]. Ceramics International, 2021, 47(3): 3938-3945. [19] INAGAKI Y, OHJI T, KANZAKI S, et al. Fracture energy of an aligned porous silicon nitride[J]. Journal of the American Ceramic Society, 2000, 83(7): 1807-1809. [20] OHJI T. Microstructural design and mechanical properties of porous silicon nitride ceramics[J]. Materials Science and Engineering: A, 2008, 498(1/2): 5-11. [21] MATYAKUBOV B M, KHOLMUMINOV A A. Anisotropic properties of nanofiber porous materials of fibroin silk and cotton cellulose[J]. Modern Physics Letters B, 2021: 2150276. [22] 邓洋洋,王 帅,姜胜南,等.浅谈放电等离子法制备碳化硼复合陶瓷[J].铁合金,2020,51(4):33-36. DENG Y Y, WANG S, JIANG S N, et al. Discussion on the preparation of boron carbide composite ceramics by spark plasma sintering[J]. Ferro-Alloys, 2020, 51(4): 33-36 (in Chinese). [23] OH S T, TAJIMA K I, ANDO M, et al. Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing[J]. Journal of the American Ceramic Society, 2000, 83(5): 1314-1316. [24] JAYASEELAN D D, KONDO N, BRITO M E, et al. High-strength porous alumina ceramics by the pulse electric current sintering technique[J]. Journal of the American Ceramic Society, 2002, 85(1): 267-269. [25] YANG Y, WANG Y, TIAN W, et al. In situ porous alumina/aluminum titanate ceramic composite prepared by spark plasma sintering from nanostructured powders[J]. Scripta Materialia, 2009, 60(7): 578-581. [26] AKHTAR F, VASILIEV P O, BERGSTRÖM L. Hierarchically porous ceramics from diatomite powders by pulsed current processing[J]. Journal of the American Ceramic Society, 2009, 92(2): 338-343. [27] COLOMBO P, BERNARDO E, BIASETTO L. Novel microcellular ceramics from a silicone resin[J]. Journal of the American Ceramic Society, 2004, 87(1): 152-154. [28] COLOMBO P. Engineering porosity in polymer-derived ceramics[J]. Journal of the European Ceramic Society, 2008, 28(7): 1389-1395. [29] BIASETTO L, COLOMBO P, INNOCENTINI M D M, et al. Gas permeability of microcellular ceramic foams[J]. Industrial & Engineering Chemistry Research, 2007, 46(10): 3366-3372. [30] ANDO A, KAMIKURA M, TAKEOKA Y, et al. Bioresorbable porous β-tricalcium phosphate chelate-setting cements with poly(lactic-co-glycolic acid) particles as pore-forming agent: fabrication, material properties, cytotoxicity, and in vivo evaluation[J]. Science and Technology of Advanced Materials, 2021, 22(1): 511-521. [31] 巫红平,吴任平,于 岩,等.硅藻土基多孔陶瓷的制备及研究[J].硅酸盐通报,2009,28(4):641-645. WU H P, WU R P, YU Y, ET AL. Preparation and research of porous ceramics from diatomite[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(4): 641-645 (in Chinese). [32] DESCAMPS M, RICHART O, HARDOUIN P, et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural[J]. Ceramics International, 2008, 34(5): 1131-1137. [33] WANG J J, WEI J. Facile synthesis of Zr(IV)-crosslinked carboxymethyl cellulose/carboxymethyl chitosan hydrogel using PEG as pore-forming agent for enhanced phosphate removal[J]. International Journal of Biological Macromolecules, 2021, 176: 558-566. [34] CHEN F, SHEN Q, YAN F Q, et al. Pressureless sintering of α-Si3N4 porous ceramics using a H3PO4 pore-forming agent[J]. Journal of the American Ceramic Society, 2007, 90(8): 2379-2383. [35] YANG J F, ZHANG G J, KONDO N, et al. Synthesis of porous Si3N4 ceramics with rod-shaped pore structure[J]. Journal of the American Ceramic Society, 2005, 88(4): 1030-1032. [36] ZAKARIA S K, HAKIM MD ZULKIFLI M L, AZHAR TAIB M A, et al. Recycling of wood saw dust waste as green pore forming agent for porous ceramic[J]. IOP Conference Series: Earth and Environmental Science, 2020, 596: 012017. [37] TANG S Y, YANG L, LI G J, et al. Fabrication of ceramic cores via layered extrusion forming using graphite as pore-forming agent[C]//AEIC Academic Exchange Information Centre (China). Proceedings of 2018 4th International Conference on Applied Materials and Manufacturing Technology (ICAMMT 2018), 2018. [38] KHATTAB R M, EL-RAFEI A M, ZAWRAH M F. Fabrication of porous TiO2 ceramics using corn starch and graphite as pore forming agents[J]. Interceram-International Ceramic Review, 2018, 67(4): 30-35. [39] MIN F L, WANG X Y, LI M D, et al. Preparation of high-porosity and high-strength ceramisites from municipal sludge using starch and CaCO3 as a combined pore-forming agent[J]. Journal of Materials in Civil Engineering, 2021, 33(3): 04020502. [40] DELE-AFOLABI T T, AZMAH HANIM M A, OJO-KUPOLUYI O J, et al. Tailored pore structures and mechanical properties of porous alumina ceramics prepared with corn cob pore-forming agent[J]. International Journal of Applied Ceramic Technology, 2021, 18(1): 244-252. [41] KIM Y W, KIM S H, KIM H D, et al. Processing of closed-cell silicon oxycarbide foams from a preceramic polymer[J]. Journal of Materials Science, 2004, 39(18): 5647-5652. [42] ZHANG Q, YANG F J, ZHANG C Z, et al. A novel wire-shaped supercapacitor based on MnO2 nanoflakes and carbon nanotubes with high performance synthesized by sacrificial template method[J]. Applied Surface Science, 2021, 551: 149417. [43] SONG I H, KWON I M, KIM H D, et al. Processing of microcellular silicon carbide ceramics with a duplex pore structure[J]. Journal of the European Ceramic Society, 2010, 30(12): 2671-2676. [44] DÍAZ A, HAMPSHIRE S. Characterisation of porous silicon nitride materials produced with starch[J]. Journal of the European Ceramic Society, 2004, 24(2): 413-419. [45] DÍAZ A, HAMPSHIRE S, YANG J F, et al. Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes[J]. Journal of the American Ceramic Society, 2005, 88(3): 698-706. [46] KIM J G, SIM J H, CHO W S. Preparation of porous (Ba,Sr)TiO3 by adding corn-starch[J]. Journal of Physics and Chemistry of Solids, 2002, 63(11): 2079-2084. [47] NEIRINCK B, FRANSAER J, VAN DER BIEST O, et al. A novel route to produce porous ceramics[J]. Journal of the European Ceramic Society, 2009, 29(5): 833-836. [48] KOH Y H, YOON C B, LEE S M, et al. Thermoplastic green machining for the fabrication of a piezoelectric ceramic/polymer composite with 2-2 connectivity[J]. Journal of the American Ceramic Society, 2005, 88(4): 1060-1063. [49] KOH Y H, LEE E J, YOON B H, et al. Effect of polystyrene addition on freeze casting of ceramic/camphene slurry for ultra-high porosity ceramics with aligned pore channels[J]. Journal of the American Ceramic Society, 2006, 89(12): 3646-3653. [50] FUKASAWA T, ANDO M, OHJI T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. Journal of the American Ceramic Society, 2001, 84(1): 230-232. [51] STROJNY-NEDZA A, PIETRZAK K, CHMIELEWSKI M, et al. Al2O3 preforms with gradient porosity for brake disk application[J]. Advances in Science and Technology, 2014, 91: 94-99. [52] FUKASAWA T, DENG Z Y, ANDO M, et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process[J]. Journal of the American Ceramic Society, 2002, 85(9): 2151-2155. [53] ZHU X W, JIANG D L, TAN S H, et al. Improvement in the strut thickness of reticulated porous ceramics[J]. Journal of the American Ceramic Society, 2001, 84(7): 1654-1656. [54] VOGT U F, GORBAR M, DIMOPOULOS-EGGENSCHWILER P, et al. Improving the properties of ceramic foams by a vacuum infiltration process[J]. Journal of the European Ceramic Society, 2010, 30(15): 3005-3011. [55] LUYTEN J, THIJS I, VANDERMEULEN W, et al. Strong ceramic foams from polyurethane templates[J]. Advances in Applied Ceramics, 2005, 104(1): 4-8. [56] JUN I K, KOH Y H, KIM H E. Fabrication of a highly porous bioactive glass-ceramic scaffold with a high surface area and strength[J]. Journal of the American Ceramic Society, 2006, 89(1): 391-394. [57] JUN I K, SONG J H, CHOI W Y, et al. Porous hydroxyapatite scaffolds coated with bioactive apatite-wollastonite glass-ceramics[J]. Journal of the American Ceramic Society, 2007, 90(9): 2703-2708. [58] PLESCH G, GORBÁR M, VOGT U F, et al. Reticulated macroporous ceramic foam supported TiO2 for photocatalytic applications[J]. Materials Letters, 2009, 63(3/4): 461-463. [59] TRAVITZKY N, WINDSHEIMER H, FEY T, et al. Preceramic paper-derived ceramics[J]. Journal of the American Ceramic Society, 2008, 91(11): 3477-3492. [60] SINGH M, MARTÍNEZ-FERNÁNDEZ J, DE ARELLANO-LPEZ A R. Environmentally conscious ceramics (ecoceramics) from natural wood precursors[J]. Current Opinion in Solid State and Materials Science, 2003, 7(3): 247-254. [61] SINGH M, SALEM J A. Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors[J]. Journal of the European Ceramic Society, 2002, 22(14/15): 2709-2717. [62] VARELA-FERIA F M, RAMIREZ-RICO J, MARTINEZ-FERNANDEZ J, et al. Infiltration and reaction-formation mechanism and microstructural evolution of biomorphic SiC fabricated by Si-melt infiltration[J]. Ceramic Transactions, 2012, 177: 93-101. [63] LEE Y J, KIM S R, KIM Y H, et al. Characterization of microstructure on porous silicon carbide prepared by polymer replica template method[J]. Journal of the Korean Ceramic Society, 2014, 51(6): 539-543. [64] BAI Z K, LI S Z, XU J, et al. Fabrication and gas-sensing properties of hierarchical ZnO replica using down as template[J]. Applied Physics A, 2016, 122(6): 1-7. [65] KLEPEL O, ERLITZ M, GARSUCH A, et al. Template assisted synthesis of porous carbons revisited: where does the porosity come from?[J]. Microporous and Mesoporous Materials, 2016, 224: 163-167. [66] STREITWIESER D A, POPOVSKA N, GERHARD H, et al. Application of the chemical vapor infiltration and reaction (CVI-R) technique for the preparation of highly porous biomorphic SiC ceramics derived from paper[J]. Journal of the European Ceramic Society, 2005, 25(6): 817-828. [67] FEY T, BETKE U, RANNABAUER S, et al. Reticulated replica ceramic foams: processing, functionalization, and characterization[J]. Advanced Engineering Materials, 2017, 19(10): 1700369. [68] MATSUDA H, MIZUSHIMA T, KUWABARA M. Low-temperature synthesis and electrical properties of semiconducting BaTiO3 ceramics by the Sol-gel method with high concentration alkoxide solutions[J]. Journal of the Ceramic Society of Japan, 1999, 107(1243): 290-292. [69] QIAN J M, JIN Z H. Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure[J]. Journal of the European Ceramic Society, 2006, 26(8): 1311-1316. [70] YAMANE H, KAWAMURA F, YAMADA T. Low-temperature synthesis of biomorphic cellular SiC ceramics from wood by using a Na flux[J]. Journal of the Ceramic Society of Japan, 2008, 116(1349): 163-165. [71] ZHANG X, JIANG X N, SUN C. Micro-stereolithography of polymeric and ceramic microstructures[J]. Sensors and Actuators A: Physical, 1999, 77(2): 149-156. [72] TAJIRI H A, AL-QURESHI H A. Manufacturing and characterization of porous ceramic capillary membranes for enzyme functionalization through click chemistry[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(4): 1-10. [73] RAMBO C R, SIEBER H, GENOVA L A. Synthesis of porous biomorphic α/β-Si3N4 composite from sea sponge[J]. Journal of Porous Materials, 2008, 15(4): 419-425. [74] DU Z P, YAO D X, XIA Y F, et al. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics[J]. Ceramics International, 2020, 46(9): 12942-12947. [75] FUJI M, KATO T, ZHANG F Z, et al. Effects of surfactants on the microstructure and some intrinsic properties of porous building ceramics fabricated by gelcasting[J]. Ceramics International, 2006, 32(7): 797-802. [76] DAOUD A, ABOU EL-KHAIR M T, FIROUZ F, et al. Microstructure aspects of 7075 Al-SiO2 composite foams produced by direct melt foaming method[J]. Key Engineering Materials, 2020, 835: 7-12. [77] BARG S, SOLTMANN C, ANDRADE M, et al. Cellular ceramics by direct foaming of emulsified ceramic powder suspensions[J]. Journal of the American Ceramic Society, 2008, 91(9): 2823-2829. [78] BARG S, KOCH D, GRATHWOHL G. Processing and properties of graded ceramic filters[J]. Journal of the American Ceramic Society, 2009, 92(12): 2854-2860. [79] ZHENG Y, LUO X D, YOU J G, et al. Ceramic foams with highly open channel structure from direct foaming method in combination with hollow spheres as pore-former[J]. Journal of Asian Ceramic Societies, 2021, 9(1): 24-29. [80] KIM Y W, WANG C M, PARK C B. Processing of porous silicon oxycarbide ceramics from extruded blends of polysiloxane and polymer microbead[J]. Journal of the Ceramic Society of Japan, 2007, 115(1343): 419-424. [81] WANG H, CHEN Z W, LIU L L, et al. Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent[J]. Ceramics International, 2018, 44(9): 10078-10086. [82] ZHAO J, YANG C, SHIMAI S, et al. The effect of wet foam stability on the microstructure and strength of porous ceramics[J]. Ceramics International, 2018, 44(1): 269-274. [83] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Tailoring the microstructure of particle-stabilized wet foams[J]. Langmuir, 2007, 23(3): 1025-1032. [84] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Ultrastable particle-stabilized foams[J]. Angewandte Chemie International Edition, 2006, 45(21): 3526-3530. [85] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Macroporous ceramics from particle-stabilized wet foams[J]. Journal of the American Ceramic Society, 2007, 90(1): 16-22. [86] SUN X M, ZENG T, ZHOU Y K, et al. 3D printing of porous SiC ceramics added with SiO2 hollow microspheres[J]. Ceramics International, 2020, 46(14): 22797-22804. [87] JOE LOPES A, MACDONALD E, WICKER R B. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication[J]. Rapid Prototyping Journal, 2012, 18(2): 129-143. [88] MANANARES C G, EDUARDO S Z, CAVALCANTE DA SILVA J, et al. Additive manufacturing process selection based on parts' selection criteria[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5/6/7/8): 1007-1014. [89] DAI K R, XU F. Medical application of 3D printing: a powerful tool for personalised treatment[J]. Journal of Shanghai Jiaotong University (Science), 2021, 26(3): 257-258. [90] SARMENT D P, SUKOVIC P, CLINTHORNE N. Accuracy of implant placement with a stereolithographic surgical guide[J]. The International Journal of Oral & Maxillofacial Implants, 2003, 18(4): 571-577. [91] CHAPUT C, CHARTIER T. Fabrication of ceramics by stereolithography[J]. RTejournal, 2007: 7-9. [92] CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9: 4. [93] XIA Y, ZHOU P, CHENG X, et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications[J]. Int J Nanomedicine, 2013, 8: 4197-4213. [94] BRUNELLO G, SIVOLELLA S, MENEGHELLO R, et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnology Advances, 2016, 34(5): 740-753. [95] ONAGORUWA S, BOSE S, BANDYOPADHYAY A. Fused deposition of ceramics (FDC) and composites[J]. Proceedings of Solid Freeform Fabrication Symposium, 2001: 224-231. [96] BILL TSENG T L, CHILUKURI A, PARK S C, et al. Automated quality characterization of 3D printed bone scaffolds[J]. Journal of Computational Design and Engineering, 2014, 1(3): 194-201. [97] ESSLINGER S, GREBHARDT A, JAEGER J, et al. Additive manufacturing of β-tricalcium phosphate components via fused deposition of ceramics (FDC)[J]. Materials, 2020, 14(1): 156. [98] JAFARI M A, HAN W, MOHAMMADI F, et al. A novel system for fused deposition of advanced multiple ceramics[J]. Rapid Prototyping Journal, 2000, 6(3): 161-175. [99] LIU S, MO L N, BI G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry[J]. Ceramics International, 2021, 47(15): 21108-21116. [100] WU C T, LUO Y X, CUNIBERTI G, et al. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability[J]. Acta Biomaterialia, 2011, 7(6): 2644-2650. [101] 郝艳霞.氧化锆多孔膜和涂层的制备、表征及性能研究[D].南京:南京理工大学,2003. HAO Y X. Study on the preparation, characterization and properties of porous zirconia membrane and coating[D]. Nanjing: Nanjing University of Science and Technology, 2003 (in Chinese). [102] 徐 阳.Ni-Cr-Al多孔材料的制备及其抗高温氧化性能研究[D].湘潭:湘潭大学,2018. XU Y. The fabrication and oxidation resistance of the porous Ni-Cr-Al materials[D]. Xiangtan: Xiangtan University, 2018 (in Chinese). [103] 黄虎军.Ti-Al合金多孔材料的制备与性能研究[D].长沙:中南大学,2007. HUANG H J. Preparation and properties of porous Ti-Al alloy[D]. Changsha: Central South University, 2007 (in Chinese). [104] JAYASEELAN D D, LEE W E, AMUTHARANI D, et al. In situ formation of silicon carbide nanofibers on cordierite substrates[J]. Journal of the American Ceramic Society, 2007, 90(5): 1603-1606. [105] ZHANG X Y, HUO W L, LIU J J, et al. 3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure[J]. Journal of the European Ceramic Society, 2020, 40(3): 930-934. |
[1] | ALATENG Shaga, CHEN Guanhong, CHEN Xing. Research Progress on Preparation of Biomimetic Materials by Freeze Casting under Magnetic Field [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2348-2359. |
[2] | ZHANG Chao, DENG Zhicong, MA Lei, LIU Chao, CHEN Yuning, WANG Zhibin, JIA Zijian, WANG Xianggang, JIA Lutao, CHEN Chun, SUN Zhengming, ZHANG Yamei. Research Progress and Application of 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1769-1795. |
[3] | ZHANG Yi, ZHU Yanmei, REN Qiang, JIANG Zhengwu. Progress on 3D Printing Construction Technology and Its Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1796-1807. |
[4] | LIU Junli, REN Jie, TRAN Phuong Jonathan. A Review of Recent Research Progress of 3D-Printed Concrete in Australia [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1808-1813. |
[5] | WANG Li, LI Danli, YE Kehan, GUAN Jingyuan, FENG Duo. Quantification, Optimization and Standardization of 3D Printability of Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1814-1820. |
[6] | JIAO Zekun, WANG Dongmin, WANG Qibao, HUANG Tianyong, WANG Jixiang, LI Linkun. Influencing Factors and Testing Methods of Printability of 3D Printing Concrete Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1821-1831. |
[7] | SUN Kaili, WU Xiangqiang, LIN Xiqiang, LI Guoyou, LI Xinjian, SUN Zhipeng. Research Progress on Concrete Materials for 3D Printing and 3D Printing Formwork Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1832-1843. |
[8] | JIN Yuan, XU Jiabin, SUN Dengtian, CHEN Mingxu, HUANG Yongbo, LU Lingchao, CHENG Xin. Effect of Nano-Silica on Structural Deformation, Rheological and Mechanical Properties of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1855-1862. |
[9] | XU Jiabin, JIN Yuan, ZHAO Zhihui, CHEN Mingxu, LU Lingchao, CHENG Xin. Effect of Iron Oxide Red Pigment on Rheological Property and Printability of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1863-1869. |
[10] | ZHANG Chao, DENG Zhicong, WANG Zhibin, HOU Zeyu, JIA Zijian, WANG Xianggang, JIA Lutao, CHEN Chun, SUN Zhengming, ZHANG Yamei, PAN Jinlong. Effects of Fibers on Printing Performance and Mechanical Properties of 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1870-1878. |
[11] | CAO Qianfei, CUI Dong, SHI Xiaohan, WAN Yi, ZUO Xiaobao, LAI Jianzhong. Effect of Humidity Evolution on Microstructure and Mechanical Properties of Alternate 3D Printing Specimens [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1879-1888. |
[12] | XIAO Bofeng, LI Gu, ZHANG Guanghu. Effect of Alkali-Resistant Glass Fiber Content on Performance of 3D Printed Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1889-1894. |
[13] | LIU Xiongfei, LI Qi, WANG Li, WANG Nan. Bonding Behavior of Spray-Based 3D Printing Magnesium Phosphate Cement and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1895-1904. |
[14] | LIU Xiaopeng, FENG Jingjing, LIU Zhongqiu, ZHOU Jing. Discussion on Statics Numerical Simulation of 3D Printed Concrete Hollow Gravity Dam [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1905-1910. |
[15] | LIU Wenjin, ZHOU Guoxiang, LIN Kunpeng, ZHANG Yanzhao, ZHAO Zhe, YANG Zhihua, JIA Dechang, ZHOU Yu. Research Progress on Slurry System of Ceramic 3D Printing Technology Based on Slurry Morphology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1918-1926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||