BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2020, Vol. 39 ›› Issue (12): 4022-4033.
Previous Articles Next Articles
WANG Jiapei1,2, JIANG Song1,2, CONG Ye1,2, LI Xuanke1,2, DONG Zhijun1, YUAN Guanming1, LI Yanjun1, ZHANG Jiang1
Published:
2021-02-01
CLC Number:
WANG Jiapei, JIANG Song, CONG Ye, LI Xuanke, DONG Zhijun, YUAN Guanming, LI Yanjun, ZHANG Jiang. Research Progress of MXenes-Based Materials for Electrocatalytic Hydrogen Evolution[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 4022-4033.
[1] Murthy A P, Madhavan J, Murugan K. Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media[J]. Journal of Power Sources, 2018, 398: 9-26. [2] Li A L, Sun Y M, Yao T D, et al. Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewablehydrogen[J]. Chemistry-A European Journal, 2018, 24(69): 18334-18355. [3] 李小丽,薛文明,莫 容,等.微量铱掺杂CoxNi1-xO纳米线阵列的制备及其电催化性能[J].催化学报,2019,40(10):1576-1584. [4] 于 博,李 研,刘 辉,等.NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J].人工晶体学报,2020,49(2):270-275. [5] Zhu J, Hu L S, Zhao P X, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918. [6] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253. [7] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. [8] Handoko A D, Fredrickson K D, Anasori B, et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity[J]. ACS Applied Energy Materials, 2018, 1(1): 173-180. [9] Pang J, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48(1): 72-133. [10] Chia X Y, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis[J]. Nature Catalysis, 2018, 1(12): 909-921. [11] Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials, 2018, 30(52): 1804779. [12] 严 康,关云锋,丛 野,等.溶剂热氧化少层Ti3C2 MXene制备二维TiO2/Ti3C2复合光催化剂[J].无机化学学报,2019,35(7):1203-1211. [13] Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. [14] Vahidmohammadi A, Hadjikhani A, Shahbazmohamadi S, et al. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries[J]. ACS Nano, 2017, 11(11): 11135-11144. [15] Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. [16] Hantanasirisakul K, Zhao M Q, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties[J]. Advanced Electronic Materials, 2016, 2(6): 1600050. [17] Ling Z, Ren C E, Zhao M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proc Natl Acad Sci USA, 2014, 111(47): 16676-16681. [18] Ding L, Wei Y Y, Wang Y J, et al. A Two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. [19] Seh Z W, Fredrickson K D, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Letters, 2016, 1(3): 589-594. [20] Gao G P, O’Mullane A P, Du A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction[J]. ACS Catalysis, 2017, 7(1): 494-500. [21] Xu T X, Wang J P, Cong Y, et al. Ternary BiOBr/TiO2/Ti3C2Tx MXene nanocomposites with heterojunction structure and improved photocatalysis performance[J]. Chinese Chemical Letters, 2020, 31(4): 1022-1025. [22] Lipatov A, Lu H, Alhabeb M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers[J]. Science Advances, 2018, 4(6): 1-7. [23] Ran J, Gao G, Li F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications, 2017, 8: 13907. [24] Jiang Y N, Sun T, Xie X, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution[J]. ChemSusChem, 2019, 12(7): 1368-1373. [25] Yuan W, Cheng L F, An Y R, et al. MXene nanofibers as highly active catalysts for hydrogen evolution reaction[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(7): 8976-8982. [26] Yoon Y, Tiwari A P, Lee M, et al. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(42): 20869-20877. [27] Yoon Y, Tiwari A P, Choi M, et al. Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: chemical composition controllable phosphorous doped vanadium carbide MXene[J]. Advanced Functional Materials, 2019, 29(30): 1903443. [28] Guan Y F, Jiang S, Cong Y, et al. A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes[J]. 2D Materials, 2020, 7(2): 025010. [29] Pan Y, Yang N, Chen Y J, et al. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity[J]. Journal of Power Sources, 2015, 297: 45-52. [30] Ramirez-Mondragon E, Contreras O E, Tamayo-Perez U J, et al. Synthesis and characterization of Ni2P and MoS2 on MWCNT as an innovative catalytic material for hydrogen generation[J]. Applied Surface Science, 2020, 503: 144163. [31] Wang H, Wu Y, Yuan X Z, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges[J]. Advanced Materials, 2018, 30(12): 1704561. [32] 门张蕾,范洪生,王荣明.铂基纳米材料电催化剂研究进展[J].金属功能材料,2018,25(1):10-17. [33] Li Z Y, Gao Q M, Zhang H, et al. Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction[J]. Scientific Reports, 2017, 7: 43352. [34] Yuan Y Y, Li H S, Wang L G, et al. Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene)[J]. Acs Sustainable Chemistry and Engineering, 2019, 7(4): 4266-4273. [35] Zhang X B, Shao B Y, Sun Z M, et al. Platinum nanoparticle-deposited Ti3C2Tx MXene for hydrogen evolution reaction[J]. Industrial and Engineering Chemistry Research, 2020, 59(5): 1822-1828. [36] Cheng N C, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7: 13638. [37] 韩 冰,郎 睿,乔波涛,等.单原子催化的最新进展[J].催化学报,2017,38(9):1498-1507. [38] Zhang J Q, Zhao Y F, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018, 1(12): 985-992. [39] Ramalingam V, Varadhan P, Fu H C, et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution[J]. Advanced Materials, 2019, 31(48): 1903841. [40] Jiang Y, Wu X Q, Yan Y C, et al. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions[J]. Small, 2019, 15(12): 1805474. [41] Li Z, Qi Z Y, Wang S W, et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions[J]. Nano Letters, 2019, 19(8): 5102-5108. [42] 康建立,李一飞.具有高产氢反应催化活性的纳米多孔Ni基合金电极[J].天津工业大学学报,2017,36(6):45-49. [43] 常进法,肖 瑶,罗兆艳,等.水电解制氢非贵金属催化剂的研究进展[J].物理化学学报,2016,32(7):1556-1592. [44] Li P K, Zhu J G, Handoko A D, et al. High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification[J]. Journal of Materials Chemistry A, 2018, 6(10): 4271-4278. [45] Ling C Y, Shi L, Ouyang Y X, et al. Transition Metal-Promoted V2CO2 (MXenes): a new and highly active catalyst for hydrogen evolution reaction[J]. Advanced Science, 2016, 3(11): 1600180. [46] Kuznetsov D, Chen Z X, Kumar P V, et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(44): 17809-17816. [47] Du C F, Sun X L, Yu H, et al. Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based MXene[J]. Advanced Science, 2019, 6(11): 1900116. [48] Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. [49] Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H-2 evolution from MoS2nanocatalysts[J]. Science, 2007, 317(5834): 100-102. [50] Hinnemann B, Moses P G, Bonde J, et al. Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15): 5308-5309. [51] Attanayake N H, Abeyweera S C, Thenuwara A C, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst[J]. Journal of Materials Chemistry A, 2018, 6(35): 16882-16889. [52] Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29(24): 1607017. [53] Liang J M, Ding C Y, Liu J P, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media[J]. Nanoscale, 2019, 11(22): 10992-11000. [54] Zheng B J, Chen Y F, Qi F, et al. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution[J]. 2D Materials, 2017, 4(2): 025092. [55] Li N, Zhang Y F, Jia M L, et al. 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting[J]. Electrochimica Acta, 2019, 326: 134976. [56] 郭奕彤,周爱国,胡前库,等.二维碳化物晶体V2C MXene的制备与性能研究进展[J].人工晶体学报,2019,48(11):2158-2163. [57] Kuang P Y, He M, Zhu B C, et al. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution[J]. Journal of Catalysis, 2019, 375: 8-20. [58] Wang Z G, Xu W Q, Yu K, et al. 2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting[J]. Nanoscale, 2020, 12(10): 6176-6187. [59] Naguib M, Unocic R R, Armstrong B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes"[J]. Dalton Transactions, 2015, 44(20): 9353-9358. [60] Liu X E, Dai L M. Erratum: carbon-based metal-free catalysts[J]. Nature Reviews Materials, 2016, 1: 16082. [61] 张泽霞,吕瑞涛,黄正宏等.碳基材料在电催化析氢反应中的应用[J].新型炭材料,2019,34(2):115-131. [62] Wang X, Wang S G, Qin J M, et al. Constructing conductive bridge arrays between Ti3C2Tx MXene nanosheets for high-performance lithium-ion batteries and highly efficient hydrogen evolution[J]. Inorganic Chemistry, 2019, 58(24): 16524-16536. [63] Geng D C, Zhao X X, Chen Z X, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene[J]. Advanced Materials, 2017, 29(35): 1700072. [64] Pang J B, Bachmatiuk A, Yin Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices[J]. Advanced Energy Materials, 2018, 8(8): 1702093. [65] Xu Y H, Wang Z T, Guo Z N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229. [66] Zhu X D, Xie Y, Liu Y T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions[J]. Journal of Materials Chemistry A, 2018, 6(43): 21255-21260. |
[1] | LI Nan, XIE Zhipeng, YI Zhongzhou, ZHAI Fengrui. Research and Application Progress of Ce-Y(Ca)-TZP Ceramics and Ce-TZP/Al2O3 Composite Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3729-3742. |
[2] | LIU Chunying, REN Guosheng, GAO Xiaojian. Effect of New Composite Early Strength Agent on Mechanical Performance of Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3806-3811. |
[3] | JIANG Xin-liang;XUE Yu-zhao;JIANG Nan;MA Shao-chun. Connection Performance Research of New Type Gypsum Concrete Composite L-shaped Wall [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1531-1537. |
[4] | ZHANG Yue;CHEN Long;ZHANG Nan;LIU Yi-teng;LI Xian-xian;ZHANG Jian;WANG Ya-dong;PAN Mu. Research Progress on Core-Shell Structure Silicon-Based Anodes for Lithium-Ion Batteries [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1615-1624. |
[5] | CHEN Yue-yun;SONG Min;CAO Qing-qing;MENG Fan-yue;SUN Fei. Preparation of Palygorskite/Carbon Composites and Adsorption Properties on Organic Compounds [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1693-1698. |
[6] | WU Yong-hua;YU Hao;DENG Ming-ke;LIU Jing-tao;YANG Shou-lei. Size Effect of Flexural Properties of Engineered Cementitious Composite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1167-1173. |
[7] | LI Jian;ZHANG Shi-hao;FAN Bing-bing;ZHANG Rui. Preparation of High Performance B4C/Al Composite Materials by Vacuum Hot Pressing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1377-1381. |
[8] | MA Shi-bin;GAO Jian-qiang;XU Wen-bin;XU Yan-wei. Flexural Toughness of Polypropylene Fiber Concrete over Asphalt Concrete Composite Notch Beam [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1423-1429. |
[9] | YU Ke-lai;QING Long-bang;WANG Miao. Simulation Analysis of Fracture Characteristics for Aligned Steel Fiber Reinforced Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(3): 810-817. |
[10] | CHENG Xiao-xiao;MA Kun;XIA Ju-pei;LUO Zhong-qiu. Preparation and Performance Research of Phosphorus Slag Composite Cementitious Material by Alkali-activated [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(3): 949-952. |
[11] | MA Xiao;CHEN Si-li;HOU Rui. Mechanical Properties of Composite Cement Soil Mixed In Wasted Concrete Particle [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(3): 1010-1016. |
[12] | HANG Mei-yan;LU Lan;GAO Sheng. Effect of Active Composite Admixture on Erosion Resistance of Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(3): 1072-1076. |
[13] | JIN Hong;ZHANG Wei;DENG Xiang-yun;LI Jian-bao;ZHU Lu;YIN Pei-yang. Effect of Different Aluminum Sources on the Preparation and Properties of SiC/Cordierite Composite Porous Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 403-410. |
[14] | ZHAO Guo-sheng;ZHANG Zhuo;MA Xue-ying;LI Qing;FANG Da-wei;ZANG Shu-liang. Progress of TiO2 Mesocrystals Photocatalyst [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 524-528. |
[15] | ZENG Fan;CHEN Jian-jun;JIANG Min;FANG Ning-xiang. Properties of Reaction Bonded Silicon Carbide Ceramics Reinforced by SiC Nanowires [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 586-590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||