[1] Berredjem L, Arabi N, Molez L.Mechanical and durability properties of concrete based on recycled coarse and fine aggregates produced from demolished concrete[J].Construction and Building Materials, 2020, 246: 118421. [2] 焦隽隽,朱俊锋.再生混凝土冻融损伤可靠性分析[J].硅酸盐通报,2020,39(4):1145-1152. [3] 尹志刚,张 恺,范 巍,等.不同冻融介质作用下再生骨料透水混凝土耐久性试验研究[J].硅酸盐通报,2019,38(7):2137-2143. [4] 李北星,钱 兴,王 凯.酸雨-冻融耦合侵蚀作用下混凝土性能劣化规律[J].硅酸盐通报,2019,38(11):3559-3564. [5] Xu S H, Li A B, Wang H. Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading[J]. Construction and Building Materials, 2017, 148: 344-358. [6] 肖前惠,曹志远,关 虓,等.冻融与硫酸盐侵蚀耦合作用下再生混凝土劣化规律[J].硅酸盐通报,2020,39(2):352-358. [7] 刘传辉,吴 婷.冻融条件下再生自密实混凝土力学性能试验研究[J].硅酸盐通报,2018,37(8):2640-2645. [8] 曹芙波,尹润平,王晨霞.冻融损伤后再生混凝土与钢筋黏结滑移性能梁式试验研究[J].建筑结构学报,2017,38(4):141-148. [9] Liu K H, Yan J C, Meng X X, et al. Bond behavior between deformed steel bars and recycled aggregate concrete after freeze-thaw cycles[J]. Construction and Building Materials, 2020, 232: 117236. [10] Wang B X, Pan J J, Fang R C, et al. Damage model of concrete subjected to coupling chemical attacks and freeze-thaw cycles in saline soil area[J]. Construction and Building Materials, 2020, 242: 118205. [11] Qiu W L, Teng F, Pan S S. Damage constitutive model of concrete under repeated load after seawater freeze-thaw cycles[J]. Construction and Building Materials, 2020, 236: 117560. [12] 苏有彪,胡大琳,张 航,等.碳化-冻融作用下钢筋混凝土梁承载力衰减分析[J].硅酸盐通报,2019,38(4):948-956. [13] 郑 捷,董立国,秦 卿,等.冻融循环下钢筋混凝土框架梁柱中节点抗震性能试验研究[J].建筑结构学报,2016,37(10):73-81. [14] Shang H S, Song Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles[J]. Cement and Concrete Research, 2006, 36(10): 1857-1864. [15] Duan A, Jin W L, Qian J R. Effect of freeze-thaw cycles on the stress-strain curves of unconfined and confined concrete[J]. Materials and Structures, 2011, 44(7): 1309-1324. [16] Hasan M, Ueda T, Sato Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading[J]. Journal of Materials in Civil Engineering, 2008, 20(1): 37-45. [17] Yang W, Zheng S S, Zhang D Y, et al. Seismic behaviors of squat reinforced concrete shear walls under freeze-thaw cycles: a pilot experimental study[J]. Engineering Structures, 2016, 124: 49-63. [18] Xu S H, Li A B, Ji Z Y, et al. Seismic performance of reinforced concrete columns after freeze-thaw cycles[J]. Construction and Building Materials, 2016, 102: 861-871. [19] Liu K H, Yan J C, Alam M S, et al. Seismic fragility analysis of deteriorating recycled aggregate concrete bridge columns subjected to freeze-thaw cycles[J]. Engineering Structures, 2019, 187: 1-15. [20] Seif Eldin H M, Galal K. Effect of reinforcement anchorage end detail and spacing on seismic performance of masonry shear walls[J]. Engineering Structures, 2018, 157: 268-279. [21] Petersen L, Lohaus L, Polak M A, et al. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements[J]. ACI Materials Journal, 2007, 104(4): 369-378. [22] CEB-FIB Model-Code: Part I-III. Design code[M]. London: Thomas Telford, 1991. [23] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2): 133-141. [24] Qin Q, Zheng S S, LI L, et al. Experimental study and numerical simulation of seismic behavior for RC columns subjected to freeze-thaw cycles[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-13. |