[1] 蒋元駉,韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社,1996. [2] Breitenbucher R, Mangold M. Minimization of thermal cracking in concrete members at early ages[M]//Thermal Cracking in Concrete at Early Ages. Boca Raton: CRC Press, 1994: 223-230. [3] Mangold M. Thermal cracking in concrete at early ages[M]. E&FN SPON, London, 1994: 137-134. [4] 郝 磊,韩建国,阎培渝,等.膨胀剂提升混凝土抗塑性开裂能力研究[J].混凝土,2019(2):48-51+56. [5] 江晨晖,陈伟东,潘丽君,等.混凝土早龄期抗裂性能综合优化与试验评价[J].新型建筑材料,2019,46(4):16-19. [6] 张建峰,罗 平,周世华.纤维对混凝土早期塑性开裂的影响[J].混凝土,2010(7):76-78. [7] 钟佩华,刘加平,王育江,等.高吸水树脂种类与粒形对高强混凝土自收缩及耐久性的影响[J].新型建筑材料,2015,42(1):8-12. [8] 魏定邦,李晓民,王起才,等.高吸水树脂对机制砂混凝土收缩性能和强度的影响研究[J].兰州交通大学学报,2020,39(3):19-24. [9] 张守祺,路振宝,昂 源,等.高吸水树脂吸液特性对混凝土性能的影响[J].硅酸盐学报,2020,48(8):1278-1284. [10] Assmann A, Reinhardt H W. Tensile creep and shrinkage of SAP modified concrete[J]. Cement and Concrete Research, 2014, 58: 179-185. [11] Deng Z P, Cheng H, Wang Z G, et al. Compressive behavior of the cellular concrete utilizing millimeter-size spherical saturated SAP under high strain-rate loading[J]. Construction and Building Materials, 2016, 119: 96-106. [12] Chen P, Jin Z Q, Li J Q, et al. Compressive strength and chloride penetration of SAP concrete in saline soil environment[J]. The Ocean Engineering, 2017, 35(2): 50-55. |