[1] Atis C D, Karahan O, Ari K, et al. Relation between strength properties (flexural and compressive) and abrasion resistance of fiber (steel and polypropylene)-reinforced fly ash concrete[J]. Journal of Materials in Civil Engineering, 2009, 21(8): 402-408. [2] Çavdar A, Yetgin Ş. Investigation of abrasion resistance of cement mortar with different pozzolanic compositions and subjected to sulfated medium[J]. Construction and Building Materials, 2010, 24: 461-470. [3] Singh G, Siddique R. Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS)[J]. Construction and Building Materials, 2012, 28: 421-426. [4] Siddique R, Kapoor K, Kadri E H, et al. Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete[J]. Construction and Building Materials, 2012, 29: 270-278. [5] Nili M, Ehsani A. Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume[J]. Materials and Design, 2015, 75: 174-183. [6] Siddique R, Khatib J M. Abrasion resistance and mechanical properties of high-volume fly ash concrete[J]. Materials and Structures, 2010, 43(5): 709-718. [7] Rao S K, Sravana P, Rao T C. Investigating the effect of M-sand on abrasion resistance of roller compacted concrete containing GGBS[J]. Construction and Building Materials, 2016, 122: 191-201. [8] Grdic Z J, Curcic G A T, Ristic N S, et al. Abrasion resistance of concrete micro-reinforced with polypropylene fibers[J]. Construction and Building Materials, 2012, 27(1): 305-312. [9] Wang L, Zhou S H, Shi Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Composites Part B: Engineering, 2017, 130: 28-37. [10] Gesolu M, Güeneyisi E, Khoshnaw G, et al. Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers[J]. Construction and Building Materials, 2014, 73: 19-24. [11] KłIłçA, AtişC D, Teymen A, et al. The influence of aggregate type on the strength and abrasion resistance of high strength concrete[J]. Cement and Concrete Composites, 2008, 30(4): 290-296. [12] Nazari A, Riahi S. Compressive strength and abrasion resistance of concrete containing SiO2 and Cr2O3 nanoparticles in different curing media[J]. Magazine of Concrete Research, 2012, 64(2): 177-188. [13] Sadegzadeh M, Page C L, Kettle R J. Surface microstructure and abrasion resistance of concrete[J]. Cement and Concrete Research, 1987, 17(4): 581-590. [14] Shen W G, Yang Z G, Cao L H. et al. Characterization of manufactured sand: particle shape, surface texture and behavior in concrete[J]. Construction and Building Materials, 2016, 114: 595-601. [15] Shen W G, Liu Y, Wang Z W, et al. Influence of manufactured sand’s characteristics on its concrete performance[J]. Construction and Building Materials, 2018, 172: 574-583. [16] Li B X, Ke G J, Zhou M K. Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete[J]. Construction and Building Materials, 2011, 25(1): 3849-3853. [17] 王稷良,田 波,柯国炬,等.机制砂及石粉含量对路面水泥混凝土耐磨性的影响研究[J].公路,2011,56(7):207-211. [18] 王雨利,蔡基伟,杨 雷,等.石灰石粉对砂浆耐磨性能的影响及作用机理[J].建筑材料学报,2014,17(2):270-273. [19] Sato T, Diallo F. Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2141(1): 61-67. [20] Ramezanianpour A A, Ghiasvand E, Nickseresht I, et al. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes[J]. Cement and Concrete Composites, 2009, 31(10): 715-720. [21] 郭育霞,贡金鑫,李 晶.石粉掺量对混凝土力学性能及耐久性的影响[J].建筑材料学报,2009,12(3):266-271. [22] Rao S K, Sravana P, Rao T C. Investigating the effect of m-sand on abrasion resistance of fly ash roller compacted concrete (FRCC)[J]. Construction and Building Materials, 2016, 118: 352-363. [23] Liu Y W, Pann K S. Abrasion resistance of concrete containing surface cracks[J]. Journal of the Chinese Institute of Engineers, 2011, 34(5): 683-694. [24] 柯国炬,卢忠飞,郝以党,等.路面机制砂水泥混凝土耐磨性影响因素灰色关联分析[J].硅酸盐通报,2011,30(1):216-219. [25] 杨 宁,赵美霞.再生骨料混凝土路面耐磨性的研究[J].建筑科学,2011,27(7):74-77. [26] Yang H F, Liang D Y, Deng Z H, et al. Effect of limestone powder in manufactured sand on the hydration products and microstructure of recycled aggregate concrete[J]. Construction and Building Materials, 2018, 188: 1045-1049. [27] 史才军,王德辉,贾煌飞,等.石灰石粉在水泥基材料中的作用及对其耐久性的影响[J].硅酸盐学报,2017,45(11):1582-1593. [28] 杨华山,方坤河,涂胜金,等.石灰石粉在水泥基材料中的作用及其机理[J].混凝土,2006(6):32-35. [29] 肖 佳,勾成福,金勇刚,等.CaCO3对硅酸三钙水化性能的影响[J].中南大学学报(自然科学版),2010,41(5):1894-1899. [30] Thongsanitgarn P, Wongkeo W, Chaipanich A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: effect of limestone particle size[J]. Construction and Building Materials, 2014, 66: 410-417. [31] Weerdt K D, Haha M B, Saout G L, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cement and Concrete Research, 2011, 41(3): 279-291. [32] Atis C D, Karahan O, Ari K, et al. Relation between strength properties (flexural and compressive) and abrasion resistance of fiber (steel and polypropylene)-reinforced fly ash concrete[J]. Journal of Materials in Civil Engineering, ASCE, 2009, 21(8): 402-408. [33] 邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987. [34] 董金爽,隋 龑,薛建阳.传统风格建筑混凝土梁-柱节点承载力影响参数灰色关联分析[J].建筑科学与工程学报,2019,36(6):80-87. [35] 高 辉,张 雄,张永娟,等.筛余砂浆气孔结构对其28 d抗压强度的影响[J].建筑材料学报,2014,17(3):378-382+395. [36] Pyo S, Abate S Y, Kim H K. Abrasion resistance of ultra high performance concrete incorporating coarser aggregate[J]. Construction and Building Materials, 2018, 165: 11-16. |