[1] Wang Y, Wang X Y, Scholz M, et al. A physico-chemical model for the water vapour sorption isotherm of hardened cementitious materials[J]. Construction and Building Materials, 2012, 35: 941-946. [2] Andrade C, Climent M A, Vera G. Procedure for calculating the chloride diffusion coefficient and surface concentration from a profile having a maximum beyond the concrete surface[J]. Materials and Structures, 2015, 48(4): 863-869. [3] Mehta P K, Monteiro P. Concrete: microstructure, properties, materials[M]. New York: The McGraw-Hill Companies, Inc, 2014. [4] Zhao H T, Jiang K D, Yang R, et al. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118784. [5] Abyaneh S D, Wong H S, Buenfeld N R. Computational investigation of capillary absorption in concrete using a three-dimensional mesoscale approach[J]. Composites Materials Science, 2014, 87: 54-64. [6] Yang L, Zhang Y S, Liu Z Y, et al. In-situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing[J]. Materials Letters, 2015, 160: 381-383. [7] Hall C. Water sorptivity of mortars and concretes: a review[J]. Magazine of Concrete Research, 1989, 41(147): 51-61. [8] Zhao H T, Wu X, Huang Y Y, et al. Investigation of moisture transport in cement-based materials using low-field nuclear magnetic resonance imaging[J]. Magazine of Concrete Research, 2019: 1-19. https://doi: 10.1680/jmacr.19.00211. [9] Cnudde V, Dierick M, Vlassenbroeck J, et al. High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials[J]. Nuclear Instruments and Methods in Physics Research B, 2008, 266(1): 155-163. [10] Abd A E G E, Milczarek J J. Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis[J]. Journal of Physics D: Applied Physics, 2004, 37(16): 2305-2313. [11] Nizovtsev M I, Stankus S V, Sterlyagov A N, et al. Determination of moisture diffusivity in porous materials using gamma-method[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4161-4167. [12] Hanžič L, Ilič R. Relationship between liquid sorptivity and capillarity in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1385-1388. [13] Hoseini M, Bindiganavile V, Banthia N. The effect of mechanical stress on permeability of concrete: a review[J]. Cement and Concrete Composites, 2009, 31(4): 213-220. [14] Claisse P A. Transport properties of concrete[M]. Cambridge: Woodhead Publishing, 2014. [15] Hanžič L, Kosec L, Ančel I. Capillary absorption in concrete and the Lucas-Washburn equation[J]. Cement and Concrete Composites, 2010, 32(1): 84-91. [16] Hall C, Hoff W D. Water transport in brick, stone and concrete[M]. London: Spon Press, 2012. [17] Leventis A, Verganelakis D A, Halse M R, et al. Capillary imbibition and pore characterization in cement pastes[J]. Transport in Porous Media, 2000, 39(2): 143-157. [18] Yang L, Gao D, Zhang Y, et al. Relationship between sorptivity and capillary coefficient for water absorption of cement-based materials: theory analysis and experiment[J]. Royal Society Open Science, 2019, 6: 190112. [19] Hall C, Hoff W D, Wilson M A. Effect of non-sorptive inclusions on capillary absorption by a porous material[J]. Journal of Physics D: Applied Physics, 1993, 26(1): 31-34. |