[1] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114: 2-26. [2] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256. [3] SKIBSTED J, SNELLINGS R. Reactivity of supplementary cementitious materials (SCMs) in cement blends[J]. Cement and Concrete Research, 2019, 124: 105799. [4] SNELLINGS R, SURANENI P, SKIBSTED J. Future and emerging supplementary cementitious materials[J]. Cement and Concrete Research, 2023, 171: 107199. [5] MOESGAARD M, HERFORT D, SKIBSTED J, et al. Calcium aluminosilicate glasses as supplementary cementitious materials[J]. Glass Technology-European Journal of Glass Science and Technology Part A, 2010, 51: 183-190. [6] KUCHARCZYK S, ZAJAC M, STABLER C, et al. Structure and reactivity of synthetic CaO-Al2O3-SiO2 glasses[J]. Cement and Concrete Research, 2019, 120: 77-91. [7] NIE S, THOMSEN R M, SKIBSTED J. Impact of Mg substitution on the structure and pozzolanic reactivity of calcium aluminosilicate (CaO-Al2O3-SiO2) glasses[J]. Cement and Concrete Research, 2020, 138: 106231. [8] ZHANG Y, NIE S, LIU C. Phosphorus slags: structural insights, dissolution behavior, and potential as sustainable supplementary cementitious materials[J]. Chemical Engineering Journal, 2025, 507: 160463. [9] THOMSEN R M, NIE S, LOTHENBACH B, et al. A connection between structure and reactivity in alkali-modified calcium aluminosilicate glasses for sustainable cements[J]. Journal of Non-Crystalline Solids, 2025, 665: 123606. [10] 孙 悦, 刘小青, 何 峰, 等. 煅烧温度对低品位黏土物相和结构的影响[J]. 硅酸盐通报, 2023, 42(4): 1309-1314. SUN Y, LIU X Q, HE F, et al. Effect of calcination temperature on phase and structure of low-grade clay[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1309-1314 (in Chinese). [11] 莫宗云, 刘益良, 王大光, 等. 偏高岭土-水泥基材料力学性能研究进展[J]. 硅酸盐通报, 2018, 37(3): 911-917. MO Z Y, LIU Y L, WANG D G, et al. Research progress on the physical properties of cement-based materials blended with metakaolin[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 911-917 (in Chinese). [12] SAMET B, MNIF T, CHAABOUNI M. Use of a kaolinitic clay as a pozzolanic material for cements: formulation of blended cement[J]. Cement and Concrete Composites, 2007, 29(10): 741-749. [13] TAYLOR-LANGE S C, LAMON E L, RIDING K A, et al. Calcined kaolinite-bentonite clay blends as supplementary cementitious materials[J]. Applied Clay Science, 2015, 108: 84-93. [14] GARG N, SKIBSTED J. Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay[J]. Cement and Concrete Research, 2016, 79: 101-111. [15] 董烨民, 钱 雄, 胡传林, 等. 新型胶凝材料: 石灰石煅烧黏土水泥研究进展[J]. 硅酸盐学报, 2023, 51(9): 2446-2464. DONG Y M, QIAN X, HU C L, et al. New cementitious material: advances in limestone calcined clay cement[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2446-2464 (in Chinese). [16] ANDERSEN M D, JAKOBSEN H J, SKIBSTED J. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2006, 36(1): 3-17. [17] NIE S, SKIBSTED J. Aluminum distribution in C-(A)-S-H and calcium aluminate hydrate phases of Portland cement-metakaolin-limestone blends studied by 27Al and 29Si NMR spectroscopy[J]. Cement and Concrete Research, 2024, 186: 107664. [18] 肖建敏, 李 辉, 党 媛, 等. 29Si固体核磁共振技术在水泥基材料定量分析中的应用[J]. 硅酸盐通报, 2017, 36(12): 4072-4077. XIAO J M, LI H, DANG Y, et al. Application of 29Si solid-state NMR in quantitative analysis of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4072-4077 (in Chinese). [19] FERNANDEZ R, MARTIRENA F, SCRIVENER K L. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite[J]. Cement and Concrete Research, 2011, 41(1): 113-122. [20] MERZBACHER C I, SHERRIFF B L, HARTMAN J S, et al. A high-resolution 29Si and 27Al NMR study of alkaline earth aluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 1990, 124(2/3): 194-206. [21] CORMIER L, NEUVILLE D R. Ca and Na environments in Na2O-CaO-Al2O3-SiO2 glasses: influence of cation mixing and cation-network interactions[J]. Chemical Geology, 2004, 213(1/2/3): 103-113. [22] EDÉN M. 27Al NMR studies of aluminosilicate glasses[J]. Annual Reports on NMR Spectroscopy, 2015, 86: 237-331. [23] SHIMODA K, NEMOTO T, SAITO K. Local structure of magnesium in silicate glasses: a 25Mg 3QMAS NMR study[J]. The Journal of Physical Chemistry B, 2008, 112(22): 6747-6752. [24] 刘叶冬阳, 钱 雄, 覃宇坤, 等. 基于部分煅烧水菱镁矿-煅烧黏土胶凝材料的水化特性及机理[J]. 硅酸盐学报, 2023, 51(8): 1971-1978. LIU Y D Y, QIAN X, QIN Y K, et al. Hydration characteristics and mechanism of partially calcined hydromagnesite-calcined clay cementitious material[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 1971-1978 (in Chinese). [25] 胡传林, 陶永征, TARIQ J, 等. 煅烧黏土反应活性及其影响机理[J]. 建筑材料学报, 2023, 26(2): 179-185+220. HU C L, TAO Y Z, TARIQ J, et al. Reactivity of calcined clay and its influence mechanism[J]. Journal of Building Materials, 2023, 26(2): 179-185+220 (in Chinese). [26] PARIS M. The two aluminum sites in the 27Al MAS NMR spectrum of kaolinite: accurate determination of isotropic chemical shifts and quadrupolar interaction parameters[J]. American Mineralogist, 2014, 99(2/3): 393-400. [27] D’ESPINOSE DE LACAILLERIE J B, FRETIGNY C, MASSIOT D. MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model[J]. Journal of Magnetic Resonance, 2008, 192(2): 244-251. [28] AVET F, SNELLINGS R, ALUJAS DIAZ A, et al. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays[J]. Cement and Concrete Research, 2016, 85: 1-11. [29] SNELLINGS R, LI X R, AVET F, et al. A rapid, robust, and relevant (R3) reactivity test for supplementary cementitious materials[J]. ACI Materials Journal, 2019, 116(4): 155-162. |