[1] PINET O, VERNAZ E, LADIRAT C, et al. Nuclear waste vitrification[J]. Encyclopedia of Glass Science, Technology, History, and Culture, 2021, 2: 1205-1218. [2] OJOVAN M I. Vitrification as a key solution for immobilisation within nuclear waste management[J]. Arabian Journal for Science and Engineering, 2025, 50(5): 3253-3261. [3] 徐 凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7): 481-488+517. XU K. Review of international research progress on nuclear waste vitrification[J]. Materials China, 2016, 35(7): 481-488+517 (in Chinese). [4] NABYL Z, SCHULLER S, PODOR R, et al. French nuclear glass synthesis: focus on liquid waste dissolution kinetics[J]. Journal of Nuclear Materials, 2024, 601: 155329. [5] KAMAT H, ARIAS-SERRANO B I, YAREMCHENKO A, et al. Ruthenium solubility and its impact on the crystallization behavior and electrical conductivity of MoO3-containing borosilicate-based model high-level nuclear waste glasses[J]. Journal of Non-Crystalline Solids, 2020, 549: 120356. [6] ZHAO X, WANG Y, LIN P, et al. Dissolution behavior of palladium and rhodium in glass melts: implications for the viscosity and electrical conductivity of high-temperature melts[J]. Progress in Nuclear Energy, 2023, 164: 104886. [7] GRÜNEWALD W, ROTH G, TOBIE W, et al. The role of the platinum group elements ruthenium, rhodium and palladium in the vitrification of radioactive high level liquid waste using joule heated ceramic lined waste glass melters[J]. Glass Technology-European Journal of Glass Science and Technology Part A, 2008, 49(6): 266-278. [8] LAURIN C, RŃGNIER E, GOSSŃ S, et al. Redox behavior of ruthenium in nuclear glass melt: ruthenium dioxide reduction reaction[J]. Journal of Nuclear Materials, 2021, 545: 152650. [9] JIA R D, NIU C C, LIU X L, et al. Crystal spatial distribution controls the electrical response of nuclear waste glasses containing RuO2 crystals[J]. Journal of the American Ceramic Society, 2025, 108(8): e20567. [10] PEREIRA MACHADO N M, PEREIRA L, NEYRET M, et al. Influence of platinum group metal particle aggregation on the rheological behavior of a glass melt[J]. Journal of Nuclear Materials, 2022, 563: 153618. [11] PEREIRA L, NUERNBERG R, PODDA O, et al. A feedback mechanism between crystals and bubbles in a RuO2-bearing melt[J]. Journal of Non-Crystalline Solids, 2022, 582: 121456. [12] 卢嘉炜, 郭子方, 吴志豪, 等. 日本高放废液玻璃固化技术[J]. 辐射防护, 2020, 40(1): 67-77. LU J W, GUO Z F, WU Z H, et al. Vitrification technologies of high level radioactive liquid waste in Japan[J]. Radiation Protection, 2020, 40(1): 67-77 (in Chinese). [13] URUGA K, USAMI T, TSUKADA T, et al. Viscoplasticity of simulated high-level radioactive waste glass containing platinum group metal particles[J]. Journal of Nuclear Materials, 2014, 452(1-3): 419-424. [14] HANOTIN C, PUIG J, NEYRET M, et al. Platinum group metal particles aggregation in nuclear glass melts under the effect of temperature[J]. Journal of Nuclear Materials, 2016, 477: 102-109. [15] PIARRISTEGUY A, NUERNBERG R, JOUGLARD D, et al. High-resolution electrical characterization of RuO2-borosilicate glass composites[J]. Journal of Alloys and Compounds, 2021, 876: 160123. [16] NUERNBERG R B, MACHADO N M P, MALKI M, et al. Electrical behavior of RuO2-glass composites: the effect of RuO2 particle size on the percolation threshold[J]. Journal of Nuclear Materials, 2021, 546: 152777. [17] DUAN X L, ZHANG Q, LIU X Y, et al. The influence of RuO2 crystal morphology on the conductivity of glass melts during vitrification process[J]. Journal of Nuclear Materials, 2025, 616: 156068. [18] KRAUSE C, LUCKSCHEITER B. Properties and behavior of the platinum group metals in the glass resulting from the vitrification of simulated nuclear fuel reprocessing waste[J]. Journal of Materials Research, 1991, 6(12): 2535-2546. [19] SUGAWARA T, OHIRA T, MINAMI K, et al. Phase equilibrium experiments on the simulated high-level waste glass containing platinum group elements[J]. Journal of Nuclear Science and Technology, 2016, 53(3): 380-390. [20] PEUGET S, CACHIA J N, JŃGOU C, et al. Irradiation stability of R7T7-type borosilicate glass[J]. Journal of Nuclear Materials, 2006, 354(1-3): 1-13. [21] CHAKRABARTI C K, KUMAR N, MISHRA R K, et al. Palladium telluride within nuclear waste containing borosilicate glass[J]. Progress in Nuclear Energy, 2022, 148: 104236. [22] PFLIEGER R, LEFEBVRE L, MALKI M, et al. Behaviour of ruthenium dioxide particles in borosilicate glasses and melts[J]. Journal of Nuclear Materials, 2009, 389(3): 450-457. [23] GOSSŃ S, BORDIER S, GUŃNEAU C, et al. Thermodynamic assessment of the rhodium-ruthenium-oxygen (Rh-Ru-O) system[J]. Journal of Nuclear Materials, 2018, 500: 252-264. [24] YAMAZAKI K, TARUMI N, SATO I, et al. Oxidation behavior of platinum group alloys in molten glass[J]. Electrochemistry, 2024, 92(4): 043022. [25] BALE C W, BŃLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases: recent developments[J]. Calphad, 2009, 33(2): 295-311. |