[1] 袁志勇, 张学日, 李 凯, 等. 高铝瓷组成、结构与力学性能随烧成温度的演变[J]. 硅酸盐通报, 2023, 42(9): 3315-3323. YUAN Z Y, ZHANG X R, LI K, et al. Evolution of composition, structure and mechanical properties of high alumina porcelain with sintering temperature[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3315-3323 (in Chinese). [2] MENG Y, GONG G H, WU Z P, et al. Fabrication and microstructure investigation of ultra-high-strength porcelain insulator[J]. Journal of the European Ceramic Society, 2012, 32(12): 3043-3049. [3] CHAO Y, ZHANG L. Operation analysis of cap and pin suspension ceramic insulators with composite shed for DC transmission lines in China[C]. The 16th IET international conference on AC and DC power transmission (ACDC 2020). Online Conference, 2020: 858-863. [4] 孙庆峰, 王 磊, 付 军, 等. 瓷绝缘子支撑平台端面不平引起的断裂研究[J]. 电瓷避雷器, 2023(3): 183-188. SUN Q F, WANG L, FU J, et al. Fracture caused by uneven end face of porcelain insulator supporting platform[J]. Insulators and Surge Arresters, 2023(3): 183-188 (in Chinese). [5] KIM K, MOON B, KIM D, et al. Mechanical property evaluation according to alumina content of aged porcelain insulator[J]. Journal of Materials Research and Technology, 2020, 9(5): 9777-9783. [6] 胡章胤. 超高压瓷绝缘子用水泥胶合剂的性能研究[D]. 武汉: 武汉理工大学, 2021. HU Z Y. Study on the properties of cement adhesive for ultra high voltage porcelain insulator[D]. Wuhan: Wuhan University of Technology, 2021 (in Chinese). [7] 侯立红, 赵小玻. 走出对水泥胶合剂认识的几个误区[J]. 现代技术陶瓷, 2013, 34(5): 43-46. HOU L H, ZHAO X B. Getting rid of the several misunderstandings of cement compo[J]. Advanced Ceramics, 2013, 34(5): 43-46 (in Chinese). [8] 孟 将, 陈国宏, 王若民, 等. 支柱瓷绝缘子的组织结构及其可靠性[J]. 硅酸盐通报, 2015, 34(7): 2001-2006. MENG J, CHEN G H, WANG R M, et al. Microstructure and reliability of ceramic stanchion insulators[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(7): 2001-2006 (in Chinese). [9] KIM T, SANYAL S, KOO J B, et al. Analysis of cement deterioration in outdoor high-voltage insulator[J]. Materials, 2019, 12(24): 4201. [10] KARAMAN H S, SHERIF S M M, EL-GAMAL S M A, et al. Performance enhancing of porcelain insulators using low cost micro additives[J]. Ain Shams Engineering Journal, 2024, 15(4): 102622. [11] JEON S, KIM T, LEE Y J, et al. Porcelain suspension insulator for OHTL: a comparative study of new and used insulators using 3D-CT[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(5): 1654-1659. [12] 郭 飞, 沙建芳, 韩方玉, 等. 半干水泥胶合剂工作性量化[J]. 电瓷避雷器, 2015(6): 12-15. GUO F, SHA J F, HAN F Y, et al. The workability quantization of cement compo[J]. Insulators and Surge Arresters, 2015(6): 12-15 (in Chinese). [13] 周卫兵, 张雯雪, 周 军, 等. 大吨位盘形悬式瓷绝缘子用水泥胶合剂的制备与性能研究[J]. 电瓷避雷器, 2023(6): 219-225. ZHOU W B, ZHANG W X, ZHOU J, et al. Preparation and properties of large tonnage disc suspension porcelain insulators[J]. Insulators and Surge Arresters, 2023(6): 219-225 (in Chinese). [14] 庞小峰, 袁志勇, 唐 瑛, 等. 绝缘子早强型水泥胶合剂配方优化[J]. 广东电力, 2020, 33(7): 121-128. PANG X F, YUAN Z Y, TANG Y, et al. Optimization of adhesive formulas of early-strength cement for insulators[J]. Guangdong Electric Power, 2020, 33(7): 121-128 (in Chinese). [15] 张俊双, 万润楠, 吕 丽, 等. 大温差极低温环境下瓷悬式绝缘子机电性能试验分析[J]. 内蒙古电力技术, 2018, 36(6): 11-15+20. ZHANG J S, WAN R N, LYU L, et al. Test and analysis of porcelain suspension insulators with large temperature difference in extremely low temperature environment[J]. Inner Mongolia Electric Power, 2018, 36(6): 11-15+20 (in Chinese). [16] LACOMBE C, VIDAL T, SELLIER A, et al. Creep of concrete during alkali-aggregates reaction[J]. Construction and Building Materials, 2022, 336: 127355. [17] LACOMBE C, VIDAL T, SELLIER A, et al. Compressive creep of a concrete affected by advanced alkali-aggregate reaction[J]. Construction and Building Materials, 2024, 421: 135627. [18] 吴晓刚, 杨健辉, 袁冬冬, 等. 骨料种类对超高性能混凝土性能影响机理研究[J]. 硅酸盐通报, 2024, 43(9): 3164-3172. WU X G, YANG J H, YUAN D D, et al. Mechanism of aggregate type influence on properties of ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3164-3172 (in Chinese). [19] SAHA A K, SARKER P K. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars[J]. Construction and Building Materials, 2016, 123: 135-142. [20] 中华人民共和国建设部. 混凝土用水标准(附条文说明): JGJ 63—2006[S]. 北京: 中国建筑工业出版社, 2006. Ministry of Construction of the People's Republic of China. Standard of water for concrete: JGJ 63—2006[S]. Beijing: China Architecture & Building Press, 2006 (in Chinese). [21] 国家市场监督管理总局, 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Administration for Market Regulation, National Standardization Administration of the People's Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). [22] 国家市场监督管理总局, 中国国家标准化管理委员会. 水泥水化热测定方法: GB/T 12959—2024[S]. 北京: 中国标准出版社, 2024. State Administration for Market Regulation, National Standardization Administration of the People's Republic of China. Test methods for heat of hydration of cement: GB/T 12959—2024[S]. Beijing: Standards Press of China, 2024 (in Chinese). [23] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China, National Standardization Administration of the People's Republic of China. Test method for fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: Standards Press of China, 2005 (in Chinese). [24] 国家市场监督管理总局, 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间与安定性检验方法: GB/T 1346—2024[S]. 北京: 中国标准出版社, 2024. State Administration for Market Regulation, National Standardization Administration of the People's Republic of China. Test methods for water requirement of standard consistency, setting time and soundness of the Portland cement: GB/T 1346—2024[S]. Beijing: Standards Press of China, 2024 (in Chinese). [25] 中华人民共和国国家发展和改革委员会. 绝缘子胶装用水泥胶合剂: JB/T 4307—2004[S]. 北京: 机械工业出版社, 2004. National Development and Reform Commission. Cement mortar for insulators: JB/T 4307—2004[S]. Beijing: China Machine Press, 2004 (in Chinese). [26] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 绝缘子串元件的热机和机械性能试验: GB/T 22708—2008[S]. 北京: 中国标准出版社, 2009. Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China, National Standardization Administration of the People's Republic of China. Thermal-mechanical performance test and mechanical performance test on string insulator units: GB/T 22708—2008[S]. Beijing: Standards Press of China, 2009 (in Chinese). [27] BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cement and Concrete Research, 2011, 41(12): 1208-1223. [28] KARPOVA E, SKRIPKIŪNAS G, BARAUSKAS I, et al. Influence of carbon nanotubes and polycarboxylate superplasticiser on the Portland cement hydration process[J]. Construction and Building Materials, 2021, 304: 124648. [29] 李北星, 郭裕鑫, 易 浩, 等. 预湿再生砂与膨胀剂协同作用对再生砂混凝土收缩性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3368-3377. LI B X, GUO Y X, YI H, et al. Effects of synergistic action of pre-wetting recycled sand and expansion agents on shrinkage properties of recycled sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3368-3377 (in Chinese). [30] 李 鹏, 苗 苗, 马晓杰. 膨胀剂对补偿收缩混凝土性能影响的研究进展[J]. 硅酸盐通报, 2016, 35(1): 167-173. LI P, MIAO M, MA X J. Effect of expansive agent on the performance of shrinkage-compensated concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 167-173 (in Chinese). [31] JENNINGS H M, KUMAR A, SANT G. Quantitative discrimination of the nano-pore-structure of cement paste during drying: new insights from water sorption isotherms[J]. Cement and Concrete Research, 2015, 76: 27-36. |