[1] MEHARE M D, MEHARE C M, SWART H C, et al. Recent development in color tunable phosphors: a review[J]. Progress in Materials Science, 2023, 133: 101067. [2] ZHAO M, ZHANG Q Y, XIA Z G. Narrow-band emitters in LED backlights for liquid-crystal displays[J]. Materials Today, 2020, 40: 246-265. [3] ZHANG Y P, LUO L, CHEN G T, et al. Green and red phosphor for LED backlight in wide color gamut LCD[J]. Journal of Rare Earths, 2020, 38(1): 1-12. [4] NAIR G B, SWART H C, DHOBLE S J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization[J]. Progress in Materials Science, 2020, 109: 100622. [5] ZHANG Y Z, GUO X, ZHANG M H, et al. A novel highly thermal-stable Ca2GaNbO6∶Sm3+ phosphor with excellent color purity for high CRI wLEDs and security ink[J]. Journal of Alloys and Compounds, 2024, 1002: 175459. [6] MIN Z Y, ZENG Q, CHEN S M, et al. Tunable photoluminescence of LiNbO3∶Re3+ (RE3+=Dy3+, Sm3+, Dy3+/Sm3+) single-phase phosphors for warm white LEDs[J]. Journal of Alloys and Compounds, 2022, 924: 166497. [7] PENG X Y, GUO X, CUI R R, et al. Novel orange red phosphor BaLaGaO4∶Sm3+ with high quantum efficiency and good thermal stability for indoor illumination and anti-counterfeiting inks applications[J]. Ceramics International, 2024, 50(17): 30111-30123. [8] SUN Q, WANG S Y, DEVAKUMAR B, et al. Double perovskite Ca2LuTaO6∶Eu3+ red-emitting phosphors: synthesis, structure and photoluminescence characteristics[J]. Journal of Alloys and Compounds, 2019, 804: 230-236. [9] SHU S, WANG Y, KE Y E, et al. NaCaTiTaO6∶Sm3+: a novel orange-red-emitting tantalate phosphor with excellent thermal stability and high color purity for white LEDs[J]. Journal of Alloys and Compounds, 2020, 848: 156359. [10] HU R, ZHANG Y, ZHAO Y, et al. UV-Vis-NIR broadband-photostimulated luminescence of LiTaO3∶Bi3+ long-persistent phosphor and the optical storage properties[J]. Chemical Engineering Journal, 2020, 392: 124807. [11] NOTO L L, CHITHAMBO M L, NTWAEABORWA O M, et al. The greenish-blue emission and thermoluminescent properties of CaTa2O6∶Pr3+[J]. Journal of Alloys and Compounds, 2014, 589: 88-93. [12] ZHU F M, GAO Y, ZHU B M, et al. Ni2+-doped MgTa2O6 phosphors capable of near-infrared II and III emission under blue-light excitation[J]. Chemical Engineering Journal, 2024, 479: 147568. [13] YANG N, LI Z, ZHANG Z W, et al. A highly thermal-stable red-emitting tantalate phosphor for WLED and multiple-mode optical temperature sensor dual-applications[J]. Ceramics International, 2024, 50(4): 6880-6891. [14] AZAM S, IRFAN M, ABBAS Z, et al. Optoelectronic properties of Nd3+ doped CaTa2O6: insights from the GGA+U calculations[J]. Optik, 2021, 225: 165270. [15] TIAN C, RUAN J, ZHAO X J, et al. Structure, spectroscopic properties and optical temperature-sensing behavior of glass-ceramics containing polymorphic CaTa2O6∶Er3+/Yb3+ nanocrystals[J]. Journal of Materials Chemistry C, 2024, 12(40): 16594-16607. [16] MING J Y, LUO C L, LING S K, et al. Synthesis and optical properties of Gd4Al2O9∶Eu3+, a red emitting phosphor with a strong negative thermal quenching effect[J]. RSC Advances, 2022, 12(49): 31546-31554. [17] RUAN F Y, FAN G D, LI N, et al. Anomalous thermal quenching behavior of novel orange-red SrLa1-xNaTeO6∶xSm3+ phosphors for optical temperature sensing[J]. Journal of Luminescence, 2024, 265: 120223. [18] UPADHYAY M M, KUMAR K. Negative thermal expansion enhanced upconversion emission in Y2Mo3O12∶Er3+/Yb3+ phosphor[J]. Ceramics International, 2025, 51(12): 16849-16856. [19] DANG P P, WANG W, LIAN H Z, et al. How to obtain anti-thermal-quenching inorganic luminescent materials for light-emitting diode applications[J]. Advanced Optical Materials, 2022, 10(6): 2102287. [20] TOBY B H, VON DREELE R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package[J]. Journal of Applied Crystallography, 2013, 46(2): 544-549. [21] JAHNBERG L, HERSH L S, TOGURI J M, et al. Crystal structure of orthorhombic CaTa2O6[J]. Acta Chemica Scandinavica, 1963, 17: 2548-2559. [22] 胡正开, 杨伟斌, 熊飞兵, 等. Sm3+掺杂Na5Y(MoO4)4-y(WO4)y高热稳定性荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2024, 53(6): 1016-1025. HU Z K, YANG W B, XIONG F B, et al. Preparation and luminescence properties of Sm3+ doped Na5Y1-x(MoO4)4-y(WO4)y phosphors with high thermal stability[J]. Journal of Synthetic Crystals, 2024, 53(6): 1016-1025 (in Chinese). [23] WEI C, ZHANG J, SUN Z, et al. Na5Y(MoO4)4∶Sm3+ red phosphor with good thermal stability and high color rendering index for plant growth lighting and white light emitting diodes[J]. Journal of Alloys and Compounds, 2024, 991: 174428. [24] DENG Y, ZHU F M, GAO Y, et al. Strategy of charge compensation for high-performance Ni2+-activated MgAl2O4 spinel near-infrared phosphor synthesis via the sol-gel combustion method[J]. Inorganic Chemistry, 2024, 63(14): 6555-6563. [25] TIAN X Y, GUO L J, WEN J, et al. Anti-thermal quenching behavior of Sm3+ doped SrMoO4 phosphor for new application in temperature sensing[J]. Journal of Alloys and Compounds, 2023, 959: 170574. [26] SHUI X, ZOU C Y, ZHANG W T, et al. Effect of M3+ (M = Bi, Al) co-doping on the luminescence enhancement of Ca2ZnSi2O7∶Sm3+ orange-red-bemitting phosphors[J]. Ceramics International, 2021, 47(6): 8228-8235. [27] 蒋小康, 高 峰, 周恒为. Y2MgTiO6∶Dy3+, Eu3+荧光粉的发光性能及能量传递[J]. 硅酸盐通报, 2025, 44(1): 353-359. JIANG X K, GAO F, ZHOU H W. Luminescence properties and energy transfer of Y2MgTiO6∶ Dy3+, Eu3+ Phosphors[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(1): 353-359 (in Chinese). [28] HU X P, ZHANG A L, DU Y F, et al. Orange-red emitting Sr3LaTa3O12∶Sm3+ phosphors with perovskite structure and high thermal stability for w-LEDs[J]. Journal of Rare Earths, 2024, 42(3): 464-472. [29] HU S S, LU S, HONG Y, et al. A novel orange-emitting LaBMoO6∶Sm3+ phosphor[J]. Ceramics International, 2022, 48(2): 2082-2091. [30] WANG Y J, FENG P, DING S S, et al. A promising route for developing yellow long persistent luminescence and mechanoluminescence in CaGa2O4∶Pr3+, Li+[J]. Inorganic Chemistry Frontiers, 2021, 8(15): 3748-3759. [31] LI J P, TU Z Y, ZHENG Y K, et al. Zero-thermal-quenching and charge compensation for efficient luminescence in Ca9ZnK(PO4)7∶Sm3+: Optimizing defect engineering[J]. Ceramics International, 2024, 50(6): 9869-9877. [32] LIU S Y, WU M H, CHEN W, et al. Photoluminescence and afterglow behavior of orange-reddish Pr3+-activated Sr3Al2O6 phosphor[J]. Journal of Solid State Chemistry, 2021, 294: 121861. [33] ZHANG K, CHEN S R, ZHANG X Y, et al. Highly effective hybrid antimony chloride emitter with antithermal quenching phosphorescence emission for solid-state lighting[J]. Chemical Engineering Journal, 2024, 489: 151317. [34] LING S K, QIN X Y, YAN Y F, et al. Crystal defect induced zero thermal quenching β-NaYF4∶Eu3+, Sm3+ red-emitting phosphor[J]. RSC Advances, 2023, 13(1): 534-546. [35] XIAO L, ZHOU J, LIU G Z, et al. Luminescent properties of R+ doped Sr2MgSi2O7∶Eu2+, Dy3+ (R+=Li+, Ag+) phosphors[J]. Journal of Alloys and Compounds, 2017, 712: 24-29. [36] 李 婧, 许英朝, 洪俊煌, 等. 反常热猝灭Sr2Ga2SiO7∶Sm3+红色荧光粉的合成及发光性能[J]. 发光学报, 2024, 45(9): 1456-1466. LI J, XU Y C, HONG J H, et al. Synthesis and luminescence properties of abnormal thermal quenching red phosphor Sr2Ga2SiO7∶Sm3+[J]. Chinese Journal of Luminescence, 2024, 45(9): 1456-1466 (in Chinese). |