[1] 王微微, 刘海卿. 高温后铁尾矿砂混凝土力学性能试验研究[J]. 非金属矿, 2019, 42(5): 42-44. WANG W W, LIU H Q. Experimental study on mechanical properties of iron tailings sand concrete after high temperature[J]. Non-Metallic Mines, 2019, 42(5): 42-44 (in Chinese). [2] 刘云霄, 李晓光, 张春苗, 等. 铁尾矿砂水泥基灌浆料性能研究[J]. 建筑材料学报, 2019, 22(4): 538-544. LIU Y X, LI X G, ZHANG C M, et al. Properties of iron tailing sand cement based grouting material[J]. Journal of Building Materials, 2019, 22(4): 538-544 (in Chinese). [3] 申艳军, 白志鹏, 郝建帅, 等. 尾矿制备混凝土研究进展与利用现状分析[J]. 硅酸盐通报, 2021, 40(3): 845-857+876. SHEN Y J, BAI Z P, HAO J S, et al. Research progress and utilization status analysis of concrete prepared by tailings[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 845-857+876 (in Chinese). [4] GAO S, QU J Y, ZHANG S M, et al. A comparative study on mechanical and environmental performance of concrete-filled steel tubes using molybdenum tailing aggregate[J]. Journal of Constructional Steel Research, 2022, 189: 107100. [5] GAO S, ZHAO G H, GUO L H, et al. Mechanical properties of circular thin-tubed molybdenum tailing concrete stubs[J]. Construction and Building Materials, 2021, 268: 121215. [6] GAO S, CUI X W, KANG S B, et al. Sustainable applications for utilizing molybdenum tailings in concrete[J]. Journal of Cleaner Production, 2020, 266: 122020. [7] 王 民, 李亚威, 阎 爽. 基于高温活化钼尾矿地质聚合物胶凝材料制备与抗压强度[J]. 硅酸盐通报, 2022, 41(5): 1689-1695+1714. WANG M, LI Y W, YAN S. Preparation and compressive strength of geopolymer cementitious material based on high temperature activated molybdenum tailings[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1689-1695+1714 (in Chinese). [8] 徐 伟, 鲁 亚, 刘松柏, 等. 碱激发-碳养护对铜尾矿固化砖的作用机理研究[J]. 硅酸盐通报, 2023, 42(1): 188-195+221. XU W, LU Y, LIU S B, et al. Mechanism of copper tailings cured bricks by alkali activation-carbonated conservation[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 188-195+221 (in Chinese). [9] SIDDIQUE S, JANG J G. Assessment of molybdenum mine tailings as filler in cement mortar[J]. Journal of Building Engineering, 2020, 31: 101322. [10] QUAN X Y, WANG S L, LI J T, et al. Utilization of molybdenum tailings as fine aggregate in recycled aggregate concrete[J]. Journal of Cleaner Production, 2022, 372: 133649. [11] QUAN X Y, WANG S L, LIU K N, et al. Evaluation of molybdenum tailings as replacement for fine aggregate in concrete: mechanical, corrosion resistance, and pore microstructural characteristics[J]. Construction and Building Materials, 2022, 343: 127982. [12] 汤 明, 杨 松, 郭加付, 等. 考虑石粉对流变性影响的自密实混凝土配合比设计[J]. 建筑材料学报, 2022, 25(2): 191-198. TANG M, YANG S, GUO J F, et al. Mix design of self-compacting concrete considering the effect of limestone powder on rheology[J]. Journal of Building Materials, 2022, 25(2): 191-198 (in Chinese). [13] 吴 涛, 杨 雪, 刘 喜. 钢-聚丙烯混杂纤维自密实轻骨料混凝土性能[J]. 建筑材料学报, 2021, 24(2): 268-275+282. WU T, YANG X, LIU X. Properties of self-compacting lightweight concrete reinforced with hybrid steel and polypropylene fibers[J]. Journal of Building Materials, 2021, 24(2): 268-275+282 (in Chinese). [14] 徐庆元, 孙胜伟, 胡昌林, 等. CRTS III型板式轨道自适应多尺度损伤演变模型[J]. 铁道科学与工程学报, 2024, 21(11): 4383-4394. XU Q Y, SUN S W, HU C L, et al. Adaptive multi-scale damage evolution model for CRTS III slab track[J]. Journal of Railway Science and Engineering, 2024, 21(11): 4383-4394 (in Chinese). [15] 王国伟, 侍克斌, 穆永梅, 等. 陡深斜井自密实混凝土及衬砌快速施工技术研究[J]. 水利水电技术, 2019, 50(增刊1): 187-191. WANG G W, SHI K B, MU Y M, et al. Study on rapid construction technology of self-compacting concrete and lining in steep and deep inclined shaft[J]. Water Resources and Hydropower Engineering, 2019, 50(supplement 1): 187-191 (in Chinese). [16] 徐小蓉, 余舜尧, 金 峰, 等. 整体浇筑堆石混凝土拱坝施工期温度监测与等效均质仿真研究[J]. 水利学报, 2023, 54(12): 1404-1414. XU X R, YU S Y, JIN F, et al. Temperature monitoring and equivalent homogeneity simulation of integrally-poured rock-filled concrete arch dam during construction period[J]. Journal of Hydraulic Engineering, 2023, 54(12): 1404-1414 (in Chinese). [17] 冯飞鸿, 邓青平, 贾宗瑜, 等. 基于颗粒最紧密堆积理论的钼尾矿自密实混凝土设计与性能分析[J]. 混凝土, 2023(12): 131-134. FENG F H, DENG Q P, JIA Z Y, et al. Design and performance analysis of molybdenum tailings self-compacting concrete based on theory of closest particle accumulation[J]. Concrete, 2023(12): 131-134 (in Chinese). [18] 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022. State Administration for Market Regulation, Standardization Administration of China. Construction sand: GB/T 14684—2022[S]. Beijing: Standards Press of China, 2022 (in Chinese). [19] ZHANG S Y, ZHENG S Q, WANG E, et al. Grey model study on strength and pore structure of self-compacting concrete with different aggregates based on NMR[J]. Journal of Building Engineering, 2023, 64: 105560. [20] EFNARC. Specifications and guidelines for self-compacting concrete[S]. UK: EFNARC, 2005. [21] LUO T, YI Y, SUN Q, et al. The effects of adding molybdenum tailings as cementitious paste replacement on the fluidity, mechanical properties and micro-structure of concrete[J]. Journal of Building Engineering, 2022, 62: 105377. [22] QUAN X Y, WANG S L, LIU K N, et al. Influence of molybdenum tailings by-products as fine aggregates on mechanical properties and microstructure of concrete[J]. Journal of Building Engineering, 2022, 54: 104677. [23] YANG W J, WANG P. Experimental research on the relationship between splitting tensile strength and compressive strength of ceramisite concrete[J]. Advanced Materials Research, 2011, 374/375/376/377: 1434-1437. [24] 蒋正武, 高文斌, 杨 巧, 等. 低碳混凝土的技术理念与途径思考[J]. 建筑材料学报, 2023, 26(11): 1143-1150. JIANG Z W, GAO W B, YANG Q, et al. Technical principles and approaches for low carbon concrete[J]. Journal of Building Materials, 2023, 26(11): 1143-1150 (in Chinese). [25] 梁永宸, 石宵爽, 张 聪, 等. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 78-83. LIANG Y C, SHI X S, ZHANG C, et al. Comprehensive evaluation of the performance and environmental impact of fly ash geopolymer concrete[J]. Materials Reports, 2023, 37(2): 78-83 (in Chinese). [26] 于晓涵, 李秀领, 马 锐, 等. 基于LCA理论的装配式高延性再生微粉混凝土结构碳排放研究[J]. 材料导报, 2024, 38(23): 89-95. YU X H, LI X L, MA R, et al. Study on carbon emission of assembled high ductility recycled powder concrete structure based on lca theory[J]. Materials Reports, 2024, 38(23): 89-95 (in Chinese). |