BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (4): 1267-1275.DOI: 10.16552/j.cnki.issn1001-1625.2024.1369
• Reviews • Previous Articles Next Articles
DUAN Zhenhua1, ZHANG Wei1, ZHU Zeping1, XIA Huiyu1, LU Chunji1, WANG Baolong2, WU Yuqing1
Received:2024-11-12
Revised:2024-12-22
Online:2025-04-15
Published:2025-04-18
CLC Number:
DUAN Zhenhua, ZHANG Wei, ZHU Zeping, XIA Huiyu, LU Chunji, WANG Baolong, WU Yuqing. Research Progress on Recycling and Resource Application of Retired Wind Turbine Blades[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1267-1275.
| [1] DONG L, DONG H J, FUJITA T, et al. Cost-effectiveness analysis of China’s sulfur dioxide control strategy at the regional level: regional disparity, inequity and future challenges[J]. Journal of Cleaner Production, 2015, 90: 345-359. [2] YU X, QU H. Wind power in China: opportunity goes with challenge[J]. Renewable and Sustainable Energy Reviews, 2010, 14(8): 2232-2237. [3] ZHAO X, MA X W, CHEN B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. [4] MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483. [5] LIU L B, WANG Y, WANG Z, et al. Potential contributions of wind and solar power to China’s carbon neutrality[J]. Resources, Conservation and Recycling, 2022, 180: 106155. [6] 马文静, 张宇彤, 杨春振, 等. 大宗风电退役风机叶片资源化回收利用技术研究进展[J]. 洁净煤技术, 2023, 29(10): 17-26. MA W J, ZHANG Y T, YANG C Z, et al. Research progress on resource recycling technology of retired wind turbine blades in bulk wind power plants[J]. Clean Coal Technology, 2023, 29(10): 17-26 (in Chinese). [7] ZHEN T, ZHAO P X, ZHANG X, et al. The effect of GFRP powder on the high and low-temperature properties of asphalt mastic[J]. Materials, 2023, 16(7): 2662. [8] RUAN Z W, LU X, YIN Z H, et al. Spatiotemporal carbon footprint and associated costs of wind power toward China’s carbon neutrality[J]. Resources, Conservation and Recycling, 2024, 205: 107593. [9] 张柏林, 杨泽宇, 张生杨, 等. 废旧风电叶片在建筑材料中的应用[J]. 化工进展, 2024, 43(11): 6260-6270. ZHANG B L, YANG Z Y, ZHANG S Y, et al. Utilization of waste wind turbine blade in building materials[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6260-6270 (in Chinese). [10] XU Y, WANG F, LIANG D H, et al. A comprehensive review of waste wind turbine blades in China: current status and resource utilization[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 113077. [11] LIU P, BARLOW C Y. The environmental impact of wind turbine blades[J]. IOP Conference Series: Materials Science and Engineering, 2016, 139: 012032. [12] CHEN Y S, CAI G T, BAI R X, et al. Spatiotemporally explicit pathway and material-energy-emission nexus of offshore wind energy development in China up to the year 2060[J]. Resources, Conservation and Recycling, 2022, 183: 106349. [13] ZHANG W W, YU H, YIN B B, et al. Sustainable transformation of end-of-life wind turbine blades: advancing clean energy solutions in civil engineering through recycling and upcycling[J]. Journal of Cleaner Production, 2023, 426: 139184. [14] CHEN Y S, CAI G T, ZHENG L X, et al. Modeling waste generation and end-of-life management of wind power development in Guangdong, China until 2050[J]. Resources, Conservation and Recycling, 2021, 169: 105533. [15] RUANE K, SOUTSOS M, HUYNH A, et al. Construction and cost analysis of bladebridges made from decommissioned FRP wind turbine blades[J]. Sustainability, 2023, 15(4): 3366. [16] NAGLE A J, DELANEY E L, BANK L C, et al. A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned Irish wind turbine blades[J]. Journal of Cleaner Production, 2020, 277: 123321. [17] SORTE S, FIGUEIREDO A, VELA G, et al. Evaluating the feasibility of shredded wind turbine blades for sustainable building components[J]. Journal of Cleaner Production, 2024, 434: 139867. [18] LIU P, BARLOW C Y. Wind turbine blade waste in 2050[J]. Waste Management, 2017, 62: 229-240. [19] LICHTENEGGER G, RENTIZELAS A A, TRIVYZA N, et al. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050[J]. Waste Management, 2020, 106: 120-131. [20] COOPERMAN A, EBERLE A, LANTZ E. Wind turbine blade material in the united states: quantities, costs, and end-of-life options[J]. Resources, Conservation and Recycling, 2021, 168: 105439. [21] HENG H, MENG F R, MCKECHNIE J. Wind turbine blade wastes and the environmental impacts in Canada[J]. Waste Management, 2021, 133: 59-70. [22] DELANEY E L, MCKINLEY J M, MEGARRY W, et al. An integrated geospatial approach for repurposing wind turbine blades[J]. Resources, Conservation and Recycling, 2021, 170: 105601. [23] 中国可再生能源学会风能专业委员会. 2020年中国风电吊装容量统计简报[J]. 风能, 2021(11): 72-84. Wind Energy Committee of China Renewable Energy Society. Statistical brief report on wind power hoisting capacity in China in 2020[J]. Wind Energy, 2021(11): 72-84 (in Chinese). [24] 中国可再生能源学会风能专业委员会. 2023年中国风电吊装容量统计简报[J]. 风能, 2024(5): 52-67. Wind Energy Committee of China Renewable Energy Society. Statistical brief report on wind power hoisting capacity in China in 2023[J]. Wind Energy, 2024(5): 52-67 (in Chinese). [25] 黄洁亭, 谢宏文, 查 浩, 等. 风电场改造升级和退役行业分析与思考[J]. 水力发电, 2024, 50(10): 1-6. HUANG J T, XIE H W, ZHA H, et, al. Analysis and reflection on repowering and decommissioning of wind farms[J]. Water Power, 2024, 50(10): 1-6 (in Chinese). [26] 佚名. 国家能源局关于印发《风电场改造升级和退役管理办法》的通知[J]. 中华人民共和国国务院公报, 2023(22): 50-52. Anonym. Notice of the State Energy Administration of the People’s Republic of China on issuing the measures for the upgrading and decommissioning of wind farms[J]. Gazette of the State Council of the People’s Republic of China, 2023(22): 50-52 (in Chinese). [27] 佚名. 中共中央国务院关于全面推进美丽中国建设的意见[J]. 中华人民共和国国务院公报, 2024(3): 6-14. Anonym. Opinions of the Central Committee of the Communist Party of China and the State Council on comprehensively promoting the construction of beautiful China[J]. Gazette of the State Council of the People’s Republic of China, 2024(3): 6-14 (in Chinese). [28] 张朝祯, 金晓冬, 孙诗兵, 等. 废旧风机叶片的回收利用现状分析[J]. 硅酸盐通报, 2023, 42(12): 4341-4350. ZHANG Z Z, JIN X D, SUN S B, et al. Review on recent developments of recycling waste wind turbine blades[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4341-4350 (in Chinese). [29] CHEN J J, MAO B J, WU Y F, et al. Green development strategy of offshore wind farm in China guided by life cycle assessment[J]. Resources, Conservation and Recycling, 2023, 188: 106652. [30] MATTSSON C, ANDRÉ A, JUNTIKKA M, et al. Chemical recycling of end-of-Life wind turbine blades by solvolysis/HTL[J]. IOP Conference Series: Materials Science and Engineering, 2020, 942(1): 012013. [31] YOUSEF S, EIMONTAS J, STASIULAITIENE I, et al. Recovery of energy and carbon fibre from wind turbine blades waste (carbon fibre/unsaturated polyester resin) using pyrolysis process and its life-cycle assessment[J]. Environmental Research, 2024, 245: 118016. [32] MULCAHY K R, KILPATRICK A F R, HARPER G D J, et al. Debondable adhesives and their use in recycling[J]. Green Chemistry, 2022, 24(1): 36-61. [33] 陈吉朋, 王计安, 张雨秋, 等. 废弃风电叶片材料回收与再制造技术的研究进展[J]. 太阳能学报, 2023, 44(5): 328-335. CHEN J P, WANG J A, ZHANG Y Q, et al. Progress on recycling methods and remanufacturing technology of waste wind turbine blades[J]. Acta Energiae Solaris Sinica, 2023, 44(5): 328-335 (in Chinese). [34] PAULSEN E B, ENEVOLDSEN P. A multidisciplinary review of recycling methods for end-of-life wind turbine blades[J]. Energies, 2021, 14(14): 4247. [35] 陈瑞哲, 程磊磊, 顾 菁, 等. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. CHEN R Z, CHENG L L, GU J, et al. Research progress in chemical recovery technology of fiber-reinforced polymer composites[J]. CIESC Journal, 2023, 74(3): 981-994 (in Chinese). [36] RATHORE N, PANWAR N L. Environmental impact and waste recycling technologies for modern wind turbines: an overview, waste management & research[J]. Journal for a Sustainable Circular Economy, 2022, 41(4): 744-759. [37] LIU Y, LIU J, JIANG Z W, et al. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: synergistic effect of phenol and KOH on the decomposition efficiency[J]. Polymer Degradation and Stability, 2012, 97(3): 214-220. [38] VIJAY N, RAJKUMARA V, BHATTACHARJEE P. Assessment of composite waste disposal in aerospace industries[J]. Procedia Environmental Sciences, 2016, 35: 563-570. [39] SHEN M Y, GUO Z H, FENG W T. A study on the characteristics and thermal properties of modified regenerated carbon fiber reinforced thermoplastic composite recycled from waste wind turbine blade spar[J]. Composites Part B: Engineering, 2023, 264: 110878. [40] JENSEN J P, SKELTON K. Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 165-176. [41] WANG J J, WANG C H, JI Y C, et al. Mechanical properties and microscopic study of recycled fibre concrete based on wind turbine blades[J]. Materials, 2024, 17(14): 3565. [42] JANI H K, SINGH KACHHWAHA S, NAGABABU G, et al. A brief review on recycling and reuse of wind turbine blade materials[J]. Materials Today: Proceedings, 2022, 62: 7124-7130. [43] 张 韦, 刘 超, 刘化威, 等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机制[J]. 复合材料学报, 2023, 40(8): 4733-4744. ZHANG W, LIU C, LIU H W, et al. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4733-4744 (in Chinese). [44] BATURKIN D, HISSEINE O A, MASMOUDI R, et al. Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation and Recycling, 2021, 174: 105807. [45] OLIVEIRA P S, ANTUNES M L P, DA CRUZ N C, et al. Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction[J]. Journal of Cleaner Production, 2020, 274: 122948. [46] 王富平, 张 默, 周博宇. 再生风机叶片纤维对混凝土力学和抗冻性能的影响[J]. 硅酸盐通报, 2023, 42(1): 231-238. WANG F P, ZHANG M, ZHOU B Y. Effect of recycled wind turbine blade fiber on mechanical properties and frost resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 231-238 (in Chinese). [47] RODIN H, NASSIRI S, ENGLUND K, et al. Recycled glass fiber reinforced polymer composites incorporated in mortar for improved mechanical performance[J]. Construction and Building Materials, 2018, 187: 738-751. [48] HAIDER M M, NASSIRI S, ENGLUND K, et al. Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(10): 1254-1267. [49] TRENTO D, FALESCHINI F, REVILLA-CUESTA V, et al. Improving the early-age behavior of concrete containing coarse recycled aggregate with raw-crushed wind-turbine blade[J]. Journal of Building Engineering, 2024, 92: 109815. [50] YAZDANBAKHSH A, BANK L C, RIEDER K A, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades[J]. Resources, Conservation and Recycling, 2018, 128: 11-21. [51] YAZDANBAKHSH A, BANK L C, TIAN Y. Mechanical processing of GFRP waste into large-sized pieces for use in concrete[J]. Recycling, 2018, 3(1): 8. [52] FU B, LIU K C, CHEN J F, et al. Concrete reinforced with macro fibres recycled from waste GFRP[J]. Construction and Building Materials, 2021, 310: 125063. [53] XU G T, LIU M J, XIANG Y, et al. Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete[J]. Journal of Cleaner Production, 2022, 379: 134550. [54] REVILLA-GUESTA V, MANSO-MORATO J, HURTADO-ALONSO N, et al. Mechanical and environmental advantages of the revaluation of raw-crushed wind-turbine blades as a concrete component[J]. Journal of Building Engineering, 2024, 82: 108383. [55] REVILLA-GUESTA V, SKAF M, ORTEGA-LÓPEZ V, et al. Raw-crushed wind-turbine blade: waste characterization and suitability for use in concrete production[J]. Resources, Conservation and Recycling, 2023, 198: 107160. [56] ZHAO T H, SONG P F, DONG G Q, et al. Experimental research and theoretical prediction on mechanical properties for recycled GFRP fiber reinforced concrete[J]. Journal of Building Engineering, 2024, 91: 109643. [57] ZHOU B Y, ZHANG M, MA G W. An experimental study on 3D printed concrete reinforced with fibers recycled from wind turbine blades[J]. Journal of Building Engineering, 2024, 91: 109578. [58] 张 强. 掺入废风机叶片玻璃纤维的混凝土性能及试验研究[D]. 合肥: 安徽建筑大学, 2024. ZHANG Q. Performance and experimental study of concrete mixed with waste fan blade glass fiber[D]. Hefei: Anhui Jianzhu University, 2024 (in Chinese). |
| [1] | CHEN Jianhua, DAI Zili. Crack Evolution Characteristic and Strength Deterioration Mechanism of Bentonite-Fiber Improved Solidified Soil in Dry Environments [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1170-1181. |
| [2] | ZENG Jianhua, CHEN Dequan, LI Haoran, HAN Jianjun, WANG Jing, LI Luyao. Numerical Simulation of Effects of Top/Side Firing Methods on Temperature and Flow Fields of Oxygen-Fuel Glass Fiber Furnace [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1246-1256. |
| [3] | JIANG Guangqiu, LI Zhi, ZHOU Xingzheng, ZHANG Kuoji, WU Zhaoqi. Basic Mechanical Properties of Grouting Material for Offshore Wind Power Foundation under Different Seawater Pressures [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(11): 4055-4060. |
| [4] | SONG Putao, WANG Jing, LENG Faguang, XIA Jingliang, CHEN Xi, ZHANG Yaochen. Effect of Plastic Expansion Agent on Performance of Ultra High Performance Grouting Materials for Offshore Wind Power [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(5): 1608-1614. |
| [5] | LIU Yonghua, HU Xinlang, SHI Limin, GAO Yingli. Influence of Waste Circuit Board Non-Metallic Powder on Properties of Alkali-Activated Slag/Fly Ash Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(12): 4456-4464. |
| [6] | GUO Yongchang, LI Can, FENG Shaowei, TAO Haizheng, WANG Hui, LI Jianqiang. Exploration of Chalcogenide Glass Fiber Preparation Method Based on Pulse Injection Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(11): 3756-3760. |
| [7] | ZHANG Rong, WANG Bin. Influences of Aramid Fiber and Glass Fiber on Road Performance of Recycled Asphalt Mixture [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2794-2802. |
| [8] | XIAO Bofeng, LI Gu, ZHANG Guanghu. Effect of Alkali-Resistant Glass Fiber Content on Performance of 3D Printed Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1889-1894. |
| [9] | XING Sai-nan;WU Cheng-you;YU Hong-fa. Accelerated Aging Test and Microscopic Mechanism of Glass Fiber Reinforced Basic Magnesium Sulfate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 411-416. |
| [10] | XING Sai-nan;WU Cheng-you;CHEN Bo-kun;JIANG Ning-shan;ZHANG Wu-yu;YU Hong-fa. Preparation Technology of Glass Fiber Reinforced Basic Magnesium Sulfate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(6): 2072-2078. |
| [11] | ZHANG Yan;HUANG San-xi;ZU Qun;HUANG Song-lin. Acid Resistance Properties for SiO2-Al2O3-MgO System High Strength Glass Fibers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(11): 3936-3943. |
| [12] | LIU Lei;CHEN Guo-xin;SU Fang;LV Xin-min. Experimental Study on the Autoclaved Aerated Concrete Block under Shear [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(5): 1486-1491. |
| [13] | LAN Shao-heng;LI Hong-yun;DONG Xi-ping. Effect of Fiber Dosage on Pore Structure Fractal Dimension and Frost-thaw Durability of Light-weight Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(12): 4246-4251. |
| [14] | HOU Xing;XUE Qun-hu;Xiao Li-biao;Liu Yi-jun. Influence of Factors on Pore Structure of the Cement-based Foam Insulation Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2015, 34(8): 2325-2329. |
| [15] | WANG Qing-wei;LUO Li-da;NING Wei;WANG Hong-zhi;WU Xin. Effect of Sizing Modified by SiO2 Microsphere on Glass Fiber and Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2015, 34(1): 74-78. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||