BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (5): 1583-1603.DOI: 10.16552/j.cnki.issn1001-1625.2024.1242
• Cement and Concrete • Next Articles
WANG Chao1,2, LI Qiang1,2, YU Jinhu1,2, LAN Jintao2,4, JIANG Zhilv4, YANG Qian2
Received:2024-10-18
Revised:2024-12-18
Online:2025-05-15
Published:2025-05-20
CLC Number:
WANG Chao, LI Qiang, YU Jinhu, LAN Jintao, JIANG Zhilv, YANG Qian. Research Progress on Electrically Accelerated Corrosion Test of Steel Bar in Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1583-1603.
| [1] 吴松涛, 应宗权, 杜成斌, 等. 非均匀锈蚀钢筋与混凝土的黏结滑移行为[J]. 科学技术与工程, 2024, 24(24): 10401-10410. WU S T, YING Z Q, DU C B, et al. Bond-slip behavior between non-uniform corroded reinforcement and concrete[J]. Science Technology and Engineering, 2024, 24(24): 10401-10410 (in Chinese). [2] 温小栋, 王俊豪, 殷光吉, 等. 海水与腐蚀电流耦合作用下铝合金与混凝土界面黏结性能[J]. 建筑结构学报, 2024, 45(4): 237-246. WEN X D, WANG J H, YIN G J, et al. Interfacial adhesion between aluminum alloy and reinforced concrete under coupling effect of chloride ion and corrosion current[J]. Journal of Building Structures, 2024, 45(4): 237-246 (in Chinese). [3] 任青阳, 靳红华, 肖宋强, 等. 模拟酸雨侵蚀环境下钢筋混凝土结构长期性能研究综述[J]. 交通运输工程学报, 2022, 22(5): 41-72. REN Q Y, JIN H H, XIAO S Q, et al. Review on long-term performance of reinforced concrete structures under simulated acid rain erosion environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 41-72 (in Chinese). [4] 王银辉, 余 磊, 余 波, 等. 锈蚀箍筋矩形柱轴压承载力试验及理论研究[J]. 工程力学, 2024, 41(9): 123-133. WANG Y H, YU L, YU B, et al. Experimental and theoretical studies on axial compression capacity of rectangular columns with corroded stirrups[J]. Engineering Mechanics, 2024, 41(9): 123-133 (in Chinese). [5] 高延红, 张 杉, 周巧萍, 等. 自然潮差环境弯曲荷载作用下混凝土氯离子峰值浓度的分布[J]. 自然灾害学报, 2016, 25(1): 103-109. GAO Y H, ZHANG S, ZHOU Q P, et al. Distribution of peak concentration of chlorion in concrete under flexural load in the natural tidal environment[J]. Journal of Natural Disasters, 2016, 25(1): 103-109 (in Chinese). [6] 范颖芳, 周 晶, 黄振国. 受硫酸盐腐蚀钢筋混凝土构件承载力试验研究[J]. 工业建筑, 2000, 30(5): 13-15+20. FAN Y F, ZHOU J, HUANG Z G. Testing research on strength of r.c.member corroded by sulphate[J]. Industrial Construction, 2000, 30(5): 13-15+20 (in Chinese). [7] 董 征, 顾祥林, 张伟平, 等. 交叉钢筋的宏观锈蚀及其对钢筋混凝土构件抗力的影响[J]. 建筑结构学报, 2019, 40(1): 105-112. DONG Z, GU X L, ZHANG W P, et al. Macro-cell corrosion between crossed steel bars and its influence on capacities of reinforced concrete structural members[J]. Journal of Building Structures, 2019, 40(1): 105-112 (in Chinese). [8] 陈 奇, 公 伟, 苗吉军. 氯盐侵蚀下铜矿渣混凝土高温后内部钢筋锈蚀规律[J]. 复合材料学报, 2022, 39(6): 2875-2884. CHEN Q, GONG W, MIAO J J. Corrosion extents of steel bar in copper slag concrete after exposure to high temperature under chloride attack[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2875-2884 (in Chinese). [9] PAPADOPOULOS M P, APOSTOLOPOULOS C A, ZERVAKI A D, et al. Corrosion of exposed rebars, associated mechanical degradation and correlation with accelerated corrosion tests[J]. Construction and Building Materials, 2011, 25(8): 3367-3374. [10] 冯 琼, 乔宏霞, 朱彬荣, 等. 湿盐砂环境下钢筋混凝土加速锈蚀试验研究[J]. 建筑材料学报, 2018, 21(4): 568-575. FENG Q, QIAO H X, ZHU B R, et al. Experimental study on accelerated corrosion of reinforced concrete in wet salt sand environment[J]. Journal of Building Materials, 2018, 21(4): 568-575 (in Chinese). [11] 尚明刚, 张云升, 何忠茂, 等. 盐渍土环境下钢筋混凝土恒电流加速锈蚀试验及可靠性分析[J]. 建筑材料学报, 2022, 25(7): 751-759. SHANG M G, ZHANG Y S, HE Z M, et al. Constant current accelerated corrosion test and reliability analysis of reinforced concrete in saline soil environment[J]. Journal of Building Materials, 2022, 25(7): 751-759 (in Chinese). [12] 金伟良, 夏 晋, 王海龙. 内置电极模拟混凝土中钢筋非均匀锈蚀的加速试验方法: CN101762453B[P]. 2011-09-14. IN W L, XIA J, WANG H L. Accelerated test method for simulating non-uniform corrosion of steel bars in concrete with embedded electrodes: CN101762453B[P]. 2011-09-14 (in Chinese). [13] 唐先习, 杜腾飞, 郭俊瑶, 等. 高浓度氯盐环境下钢筋混凝土裂缝扩展影响因素及规律研究[J]. 建筑科学, 2024, 40(7): 49-56. TANG X X, DU T F, GUO J Y, et al. Study on influencing factors and laws of crack propagation in reinforced concrete under high concentration chloride environment[J]. Building Science, 2024, 40(7): 49-56 (in Chinese). [14] 陈 宇, 商怀帅, 冯海暴, 等. 新型钢筋与混凝土黏结本构关系的试验研究[J]. 建筑结构, 2023, 53(24): 62-67+117. CHEN Y, SHANG H S, FENG H B, et al. Experimental research on bonding constitutive relationship between new reinforcement bar and concrete[J]. Building Structure, 2023, 53(24): 62-67+117 (in Chinese). [15] 张伟平, 顾祥林, 金贤玉, 等. 混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J]. 建筑结构学报, 2010, 31(增刊1): 327-332. ZHANG W P, GU X L, JIN X Y, et al. Study on corrosion mechanism of steel bars in concrete and mechanical performance of corroded steel bars[J]. Journal of Building Structures, 2010, 31(supplement 1): 327-332 (in Chinese). [16] 李 哲, 金祖权, 邵爽爽, 等. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181. LI Z, JIN Z Q, SHAO S S, et al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment[J]. Materials Review, 2018, 32(23): 4170-4181 (in Chinese). [17] 王 霄, 陈志坚, 徐 钢. 基于阳极梯系统的苏通大桥锚固区腐蚀监测研究[J]. 建筑科学与工程学报, 2012, 29(4): 106-111. WANG X, CHEN Z J, XU G. Research on corrosion monitoring in anchorage zone for sutong bridge based on anode-ladder system[J]. Journal of Architecture and Civil Engineering, 2012, 29(4): 106-111 (in Chinese). [18] TRIANA V, LIZARAZO-MARRIAGA J, FLÓREZ J O. Steel corrosion assessment by electrochemical impedance on metakaolin blended mortars[J]. Materials Research, 2013, 16(6): 1457-1464. [19] 蒋浩森, 金祖权, 张小影, 等. 钢筋锈蚀状态的超声导波监测试验[J]. 无损检测, 2023, 45(8): 19-23+54. JIANG H S, JIN Z Q, ZHANG X Y, et al. Ultrasonic guided wave monitoring test for the corrosion status of steel bars[J]. Nondestructive Testing Technologying, 2023, 45(8): 19-23+54 (in Chinese). [20] 黄 雷, 俞阿龙. 基于IBAS-BP算法的钢筋混凝土中钢筋腐蚀程度预测模型[J]. 腐蚀与防护, 2023, 44(6): 111-117. HUANG L, YU A L. Prediction model of steel bar corrosion degree in reinforced concrete based on IBAS-BP algorithm[J]. Corrosion & Protection, 2023, 44(6): 111-117 (in Chinese). [21] 钱 磊. 氯环境下温度对钢筋混凝土结构中钢筋腐蚀的影响[D]. 上海: 上海交通大学, 2004. QIAN L. Experimental research on temperature effect on reinforcement corrosion in concrete under chloride ion environment[D]. Shanghai: Shanghai Jiao Tong University, 2004 (in Chinese). [22] 吴 瑾, 吴胜兴. 锈蚀钢筋混凝土结构损伤评估研究现状与展望[J]. 混凝土, 2001(8): 22-25. WU J, WU S X. Review on damage assessment of reinforced concrete structure due to corrosion[J]. Concrete, 2001(8): 22-25 (in Chinese). [23] 刘继睿. 持续荷载作用下非均匀锈蚀钢筋与混凝土间粘结性能的研究[D]. 青岛: 青岛理工大学, 2021. LIU J R. Study on the bond behavior between non-uniform corrosion steel bar and concrete under sustained load[D]. Qingdao: Qingdao University of Technology, 2021 (in Chinese). [24] SOHAIL M G, LAURENS S, DEBY F, et al. Significance of macrocell corrosion of reinforcing steel in partially carbonated concrete: numerical and experimental investigation[J]. Materials and Structures, 2015, 48(1): 217-233. [25] 范君峰. 海洋环境下裂缝混凝土中钢筋锈蚀研究[D]. 青岛: 青岛理工大学, 2018. FAN J F. Study on corrosion of reinforcement in cracked concrete under marine environment[D]. Qingdao: Qingdao University of Technology, 2018 (in Chinese). [26] 康 悦, 李 刚, 金祖权, 等. 海洋环境下混凝土中钢筋加速锈蚀研究[J]. 隧道建设(中英文), 2018, 38(12): 1966-1974. KANG Y, LI G, JIN Z Q, et al. Corrosion behavior of reinforced bar in concrete in marine environment[J]. Tunnel Construction, 2018, 38(12): 1966-1974 (in Chinese). [27] 温 婷. 钢筋混凝土构件通电锈蚀试验适用性研究[D]. 宜昌: 三峡大学, 2014. WEN T. Applicability study on electrified corrosion methods of reinforced concrete members[D]. Yichang: China Three Gorges University, 2014 (in Chinese). [28] 王雪松, 金贤玉, 田 野, 等. 开裂混凝土中钢筋加速锈蚀方法适用性[J]. 浙江大学学报(工学版), 2013, 47(4): 565-574+580. WANG X S, JIN X Y, TIAN Y, et al. Applicability of accelerated corrosion method of steel bars in cracked concrete structure[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(4): 565-574+580 (in Chinese). [29] MAK M W T, DESNERCK P, LEES J M. Corrosion-induced cracking and bond strength in reinforced concrete[J]. Construction and Building Materials, 2019, 208: 228-241. [30] 张延年, 卢 珍. 基于全浸泡外加电流法的锈蚀钢筋力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2012, 28(6): 1054-1058. ZHANG Y N, LU Z. Mechanical properties test of corroded reinforcement bar with all soaking and impressed current method[J]. Journal of Shenyang Jianzhu University (Natural Science), 2012, 28(6): 1054-1058 (in Chinese). [31] 黄天立, 赵志彦, 宋 力, 等. 纵筋锈蚀对钢筋混凝土梁抗剪性能影响的试验研究[J]. 中南大学学报(自然科学版), 2019, 50(8): 1901-1911. HUANG T L, ZHAO Z Y, SONG L, et al. Experimental investigation on shear performance of RC beams due to longitudinal reinforcement corrosion[J]. Journal of Central South University (Science and Technology), 2019, 50(8): 1901-1911 (in Chinese). [32] 周 昊. 珊瑚混凝土中钢筋涂层的防护性能研究[D]. 镇江: 江苏科技大学, 2022. ZHOU H. Study on protective performance of reinforcement coating in coral concrete[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022 (in Chinese). [33] 张帼一. 热-湿-氯-氧多场作用下混凝土中钢筋非均匀锈蚀模型研究[D]. 杭州: 浙江大学, 2022. ZHANG G Y. Study on non-uniform corrosion model of steel rebar in concrete under heat-moisture-chlorine-oxygen multifield[D]. Hangzhou: Zhejiang University, 2022 (in Chinese). [34] 张玖传, 刘 杰. 新老混凝土中钢筋通电加速锈蚀特性试验研究[J]. 水电能源科学, 2019, 37(1): 95-97+143. ZHANG J C, LIU J. Experimental study on accelerated corrosion behavior of shear reinforcement in new and old concrete[J]. Water Resources and Power, 2019, 37(1): 95-97+143 (in Chinese). [35] 张艺博, 郑山锁, 董立国, 等. 往复荷载作用下锈蚀钢筋与混凝土黏结性能试验研究[J]. 建筑结构学报, 2024, 45(2): 237-248. ZHANG Y B, ZHENG S S, DONG L G, et al. Experimental study on bond behavior of corroded reinforcements in concrete under reversed cyclic loading[J]. Journal of Building Structures, 2024, 45(2): 237-248 (in Chinese). [36] 刘付进. 锈蚀钢筋再生混凝土框架抗震性能试验研究[D]. 福州: 福州大学, 2020. LIU F J. Experimental study on seismic performance of corroded reinforced concrete frame[D]. Fuzhou: Fuzhou University, 2020 (in Chinese). [37] 冯伟鹏. 钢筋通电加速锈蚀方法与锈蚀效率的研究及其应用[D]. 深圳: 深圳大学, 2015. FENG W P. Experimental research on the electric accelerated corrosion method and the current efficiency[D]. Shenzhen: Shenzhen University, 2015 (in Chinese). [38] 姬永生, 张博雅, 张领雷, 等. 钢筋锈蚀层发展和锈蚀量分布模型比较研究[J]. 中国矿业大学学报, 2012, 41(3): 355-360. JI Y S, ZHANG B Y, ZHANG L L, et al. Propagation of the corrosion layer and model of corrosion distribution on steel re-enforcing bar in concrete[J]. Journal of China University of Mining & Technology, 2012, 41(3): 355-360 (in Chinese). [39] 金南国, 何家豪, 付传清, 等. 钢筋加速非均匀锈蚀试验方法和锈蚀形态研究[J]. 浙江大学学报(工学版), 2020, 54(3): 483-490. JIN N G, HE J H, FU C Q, et al. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(3): 483-490 (in Chinese). [40] FU C Q, JIN N G, YE H L, et al. Non-uniform corrosion of steel in mortar induced by impressed current method: an experimental and numerical investigation[J]. Construction and Building Materials, 2018, 183: 429-438. [41] 费红芳. 钢筋混凝土结构电迁移加速锈蚀法研究[D]. 宜昌: 三峡大学, 2012. FEI H F. Studies on accelerated corrosion method of reinforced in concrete structure by electromigration[D]. Yichang: China Three Gorges University, 2012 (in Chinese). [42] 施锦杰, 孙 伟. 电迁移加速氯盐传输作用下混凝土中钢筋锈蚀[J]. 东南大学学报(自然科学版), 2011, 41(5): 1042-1047. SHI J J, SUN W. Investigation of steel corrosion induced by accelerated chloride migration in concrete[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(5): 1042-1047 (in Chinese). [43] 徐 港, 卫 军, 刘红庆. 钢筋非均匀锈蚀试验研究[J]. 华中科技大学学报(自然科学版), 2006, 34(5): 111-114. XU G, WEI J, LIU H Q. The experimental study of the non-uniform corrosion of steel bars[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2006, 34(5): 111-114 (in Chinese). [44] 单鸿猷, 徐金霞, 蒋林华. 电化学除氯和硅酸根电迁移法的联合修复研究[J]. 材料导报, 2016, 30(14): 1-5+14. SHAN H Y, XU J X, JIANG L H. Remediation method of combining electrochemical chloride removal with electro-migration of silicate ion[J]. Materials Review, 2016, 30(14): 1-5+14 (in Chinese). [45] CHEN J W, FU C Q, YE H L, et al. Corrosion of steel embedded in mortar and concrete under different electrolytic accelerated corrosion methods[J]. Construction and Building Materials, 2020, 241: 117971. [46] 徐 港, 张 瑞, 彭艳周, 等. 保护层胀裂前钢筋通电锈蚀特性影响因素研究[J]. 华中科技大学学报(自然科学版), 2017, 45(3): 127-132. XU G, ZHANG R, PENG Y Z, et al. Study on influence factors of corroded characteristics of reinforcing bars under galvanostatic accelerated corrosion before concrete cover cracking[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(3): 127-132 (in Chinese). [47] 于秋波, 赵 卓, 元成方, 等. 钢筋混凝土梁加速锈蚀试验研究[J]. 河南科学, 2017, 35(3): 413-418. YU Q B, ZHAO Z, YUAN C F, et al. Experimental study of accelerated corrosion of reinforced concrete beam[J]. Henan Science, 2017, 35(3): 413-418 (in Chinese). [48] EL MAADDAWY T A, SOUDKI K A. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete[J]. Journal of Materials in Civil Engineering, 2003, 15(1): 41-47. [49] TESIC K, BARICEVIC A, SERDAR M, et al. Characterization of ground penetrating radar signal during simulated corrosion of concrete reinforcement[J]. Automation in Construction, 2022, 143: 104548. [50] 闫军印, 李 森. 混凝土中钢筋通电加速锈蚀与自然锈蚀的对比[J]. 山西建筑, 2012, 38(29): 141-142. YAN J Y, LI S. On comparison between reinforcement electrified accelerated corrosion and natural corrosion of concrete[J]. Shanxi Architecture, 2012, 38(29): 141-142 (in Chinese). [51] 干伟忠, 金伟良, 高明赞. 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报, 2011, 32(2): 41-47. GAN W Z, JIN W L, GAO M Z. Applicability study on accelerated corrosion methods of steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32(2): 41-47 (in Chinese). [52] ALONSO C, ANDRADE C, RODRIGUEZ J, et al. Factors controlling cracking of concrete affected by reinforcement corrosion[J]. Materials and Structures, 1998, 31(7): 435-441. [53] NOSSONI G, HARICHANDRAN R. Current efficiency in accelerated corrosion testing of concrete[J]. Corrosion, 2012, 68(9): 801-809. [54] MASLEHUDDIN M, AL-ZAHRANI M M, AL-DULAIJAN S U, et al. Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete[J]. Cement and Concrete Composites, 2002, 24(1): 151-158. [55] TORRES-ACOSTA A A, NAVARRO-GUTIERREZ S, TERÁN-GUILLÉN J. Residual flexure capacity of corroded reinforced concrete beams[J]. Engineering Structures, 2007, 29(6): 1145-1152. [56] 霍艳华. 锈蚀钢筋混凝土简支梁受剪承载力研究[D]. 南昌: 南昌大学, 2007. HUO Y H. Research on shear capacity of simply supported concrete beam with corroded reinforcement[D]. Nanchang: Nanchang University, 2007 (in Chinese). [57] 杨晓明, 吴天宇, 陈永林. 人工加速锈蚀钢筋混凝土构件中钢筋锈蚀率与锈蚀电流的关系研究[J]. 硅酸盐通报, 2016, 35(10): 3410-3416. YANG X M, WU T Y, CHEN Y L. Relationship between the current and corrosion ratio in corroded reinforced concrete component obtained by artificial accelerated corrosion method[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(10): 3410-3416 (in Chinese). [58] 吴 锋, 张 章, 龚景海. 基于锈胀裂缝的锈蚀梁钢筋锈蚀率计算[J]. 建筑结构学报, 2013, 34(10): 144-150. WU F, ZHANG Z, GONG J H. Calculation of steel corrosion rate based on corrosive crack of beams[J]. Journal of Building Structures, 2013, 34(10): 144-150 (in Chinese). [59] HONG S X, QIN S F, DONG P, et al. Quantification of rust penetration profile in reinforced concrete deduced by inverse modeling[J]. Cement and Concrete Composites, 2020, 111: 103622. [60] NGUYEN C V, LAMBERT P. Effect of current density on accelerated corrosion of reinforcing steel bars in concrete[J]. Structure and Infrastructure Engineering, 2018, 14(11): 1535-1546. [61] 洪舒贤, 郑 帆, 邢 锋, 等. 锈蚀速率对混凝土中锈蚀产物渗透的影响[J]. 深圳大学学报(理工版), 2023, 40(3): 320-325. HONG S X, ZHENG F, XING F, et al. Influence of corrosion rate on rust penetration in concrete[J]. Journal of Shenzhen University (Science and Engineering), 2023, 40(3): 320-325 (in Chinese). [62] ZHANG W P, CHEN J Y, LUO X J. Effects of impressed current density on corrosion induced cracking of concrete cover[J]. Construction and Building Materials, 2019, 204: 213-223. [63] 陈海燕, 李欢园, 陈丕茂, 等. 钢筋在混凝土模拟液中的电化学腐蚀行为[J]. 建筑材料学报, 2013, 16(1): 131-137. CHEN H Y, LI H Y, CHEN P M, et al. Electrochemical corrosion behavior of reinforcing steel in simulated concrete pore solution[J]. Journal of Building Materials, 2013, 16(1): 131-137 (in Chinese). [64] 刘 浩, 巴光忠, 苗吉军, 等. 锈蚀钢筋横截面积分布规律统计分析[J]. 土木与环境工程学报(中英文), 2022, 44(5): 205-216. LIU H, BA G Z, MIAO J J, et al. Statistical analysis of cross-sectional area distribution law of corroded reinforcing steel bars[J]. Journal of Civil and Environmental Engineering, 2022, 44(5): 205-216 (in Chinese). [65] 孙 马, 周建庭, 徐略勤, 等. 基于加速锈蚀试验的RC梁抗弯性能劣化研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(8): 51-58. SUN M, ZHOU J T, XU L Q, et al. Deterioration of the flexural behavior of RC beams based on accelerated corrosion experiments[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(8): 51-58 (in Chinese). [66] LI W W, WU M Z, SHI T S, et al. Experimental investigation of the relationship between surface crack of concrete cover and corrosion degree of steel bar using fractal theory[J]. Fractal and Fractional, 2022, 6(6): 325. [67] 吴洁琼, 郭 莉, 金 浏, 等. 非均匀锈蚀钢筋-混凝土黏结性能试验[J]. 哈尔滨工业大学学报, 2022, 54(10): 109-117. WU J Q, GUO L, JIN L, et al. Test on bond behavior between non-uniform corroded steel and concrete[J]. Journal of Harbin Institute of Technology, 2022, 54(10): 109-117 (in Chinese). [68] 马建慧, 徐 锋, 刘伟庆, 等. 保护层厚度对混凝土中钢筋锈蚀的影响[J]. 混凝土, 2017(5): 8-11. MA J H, XU F, LIU W Q, et al. Influence of the thickness of concrete coverto the corrosion of the steel in the concrete[J]. Concrete, 2017(5): 8-11 (in Chinese). [69] ZHAO Y X, ZHANG X W, DING H J, et al. Non-uniform distribution of a corrosion layer at a steel/concrete interface described by a Gaussian model[J]. Corrosion Science, 2016, 112: 1-12. [70] 赵羽习, 陈柄丞, 陈 晨, 等. 纵筋锈蚀对后张混凝土梁预应力筋应力的影响规律[J]. 东南大学学报(自然科学版), 2023, 53(6): 1020-1027. ZHAO Y X, CHEN B C, CHEN C, et al. Effects of longitudinal reinforcement corrosion on prestressed tendon stress distribution in post-tensioned concrete beams[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(6): 1020-1027 (in Chinese). [71] BAZÁN Á M, REYES E, GÁLVEZ J C. Influence of pore networking and electric current density on the crack pattern in reinforced concrete test due to pressure rust layer at early ages of an accelerated corrosion test[J]. Materials, 2019, 12(15): 2477. [72] 张伟平, 王晓刚, 顾祥林, 等. 加速锈蚀与自然锈蚀钢筋混凝土梁受力性能比较分析[J]. 东南大学学报(自然科学版), 2006, 36(增刊2): 139-144. ZHANG W P, WANG X G, GU X L, et al. Comparative study on structural performance of reinforced concrete beams subjected to natural corrosion and accelerated corrosion[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(supplement 2): 139-144(in Chinese). [73] 陈琎炜. 钢筋通电加速非均匀锈蚀试验方法、模型及适用性研究[D]. 杭州: 浙江大学, 2020. CHEN J W. Study on test method, model and applicability of non-uniform electrochemistry acceleration corrosion for reinforcement[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). [74] XIA J, JIN W, LI L Y. Performance of corroded reinforced concrete columns under the action of eccentric loads[J]. Journal of Materials in Civil Engineering, 2016, 28: 04015087. [75] ANDRADE C. Role of oxygen and humidity in the reinforcement corrosion[C]// Proceedings of the 75th RILEM Annual Week 2021. Cham: Springer International Publishing, 2023: 316-325. [76] ANDRADE C. Steel corrosion rates in concrete in contact to sea water[J]. Cement and Concrete Research, 2023, 165: 107085. [77] 尚明刚, 何忠茂, 乔宏霞, 等. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064. SHANG M G, HE Z M, QIAO H X, et al. Experimental research on accelerated corrosion of reinforced concrete based on constant current density[J]. Materials Reports, 2020, 34(22): 22058-22064 (in Chinese). [78] 陈克凡, 乔宏霞, 王鹏辉, 等. 氯氧镁水泥钢筋混凝土通电锈蚀的断裂性能分析[J]. 建筑材料学报, 2020, 23(3): 557-562. CHEN K F, QIAO H X, WANG P H, et al. Fracture behavior analysis of magnesium oxychloride cement reinforced concrete under electric corrosion[J]. Journal of Building Materials, 2020, 23(3): 557-562 (in Chinese). [79] 曹 辉, 李元可, 冯 琼, 等. 氯氧镁水泥涂层钢筋混凝土长期耐久性及退化规律分析[J]. 材料科学与工程学报, 2024, 42(1): 42-51. CAO H, LI Y K, FENG Q, et al. Analysis on long-term durability and degradation law of coated reinforced magnesium oxychloride cement concrete[J]. Journal of Materials Science and Engineering, 2024, 42(1): 42-51 (in Chinese). [80] CARÉ S, RAHARINAIVO A. Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel[J]. Cement and Concrete Research, 2007, 37(12): 1598-1612. [81] GRIMES W D, HARTT W H, TURNER D H. Cracking of concrete in sea water due to embedded metal corrosion[J]. Corrosion, 1979, 35(7): 309-316. [82] WILLIAMSON S J, CLARK L A. Effect of corrosion and load on reinforcement bond strength[J]. Structural Engineering International, 2002, 12(2): 117-122. [83] 周俊浩, 商怀帅. 往复荷载作用下锈蚀钢筋与混凝土黏结性能研究[J]. 建筑结构, 2024, 54(1): 119-123+137. ZHOU J H, SHANG H S. Study on bond behavior between corroded steel bar and concrete under effect of reciprocating load[J]. Building Structure, 2024, 54(1): 119-123+137 (in Chinese). [84] ZHU W J, DAI J G, POON C S. Prediction of the bond strength between non-uniformly corroded steel reinforcement and deteriorated concrete[J]. Construction and Building Materials, 2018, 187: 1267-1276. [85] 莫齐伟, 商怀帅, 徐芹文. 加速锈蚀与持续荷载对钢筋混凝土粘结性能的影响[J]. 建筑结构, 2021, 51(14): 112-116+93. MO Q W, SHANG H S, XU Q W. Research on bonding performance between steel bar and concrete under accelerated corrosion and sustained load[J]. Building Structure, 2021, 51(14): 112-116+93 (in Chinese). [86] 李佳尧. 多电流密度下锈蚀钢筋与混凝土粘结性能及锈蚀钢筋轮廓形貌研究[D]. 深圳: 深圳大学, 2020. LI J Y. Corrosion profile characteristics of corroded steel bar and concrete and its bonding performance between concrete under different current density[D]. Shenzhen: Shenzhen University, 2020 (in Chinese). [87] TIAN Y, ZHANG G Y, JIN X Y, et al. A comparison study on the natural and half-soaking galvanic accelerated corrosion of reinforced concrete based on an improved electrochemical model[J]. Construction and Building Materials, 2020, 261: 120515. [88] 李嘉伦, 刘国建, 佘 伟, 等. 模拟混凝土孔隙溶液中氯离子和硫酸根离子对钢筋锈蚀的影响[J/OL]. 复合材料学报, 2024: 1-14. (2024-07-22)[2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240718002&dbname=CJFD&dbcode=CJFQ. LI J L, LIU G J, SHE W, et al. Influence of chloride and sulfate on steel corrosion in simulated concrete pore solutions[J/OL]. China Industrial Economics, 2024: 1-14. (2024-07-22) [2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240718002&dbname=CJFD&dbcode=CJFQ (in Chinese). [89] 张盼盼, 刘国建, 佘 伟, 等. 不同pH值模拟混凝土孔隙液中钢筋钝化电化学响应与机制[J/OL]. 复合材料学报, 2024: 1-11. (2024-10-11) [2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241010001&dbname=CJFD&dbcode=CJFQ. ZHANG P P, LIU G J, SHE W, et al. Electrochemical response and mechanism of steel rebar passivation in simulated concrete pore solutions with different pH values[J/OL]. China Industrial Economics, 2024: 1-11. (2024-10-11)[2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241010001&dbname=CJFD&dbcode=CJFQ (in Chinese). [90] 袁均相, 刘国建, 刘志勇, 等. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J/OL]. 材料导报, 2024: 1-14. (2024-07-29)[2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20240726001&dbname=CJFD&dbcode=CJFQ. YUAN J X, LIU G J, LIU Z Y, et al. Corrosion behavior and mechanism of alloy steel submitted to chloride and sulfate[J/OL]. China Industrial Economics, 2024: 1-14. (2024-07-29)[2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20240726001&dbname=CJFD&dbcode=CJFQ (in Chinese). [91] FENG W P, TARAKBAY A, ALI MEMON S, et al. Methods of accelerating chloride-induced corrosion in steel-reinforced concrete: a comparative review[J]. Construction and Building Materials, 2021, 289: 123165. [92] XI X, YANG S T. Time to surface cracking and crack width of reinforced concrete structures under corrosion of multiple rebars[J]. Construction and Building Materials, 2017, 155: 114-125. [93] ROBLES K P V, GUCUNSKI N, KEE S H. Evaluation of steel corrosion-induced concrete damage using electrical resistivity measurements[J]. Construction and Building Materials, 2024, 411: 134512. [94] GAO X X, DEBY F, GOURBEYRE Y, et al. Influence of catholytes on the generation of steel corrosion in concrete with accelerated chloride migration method[J]. Case Studies in Construction Materials, 2022, 16: e01123. [95] 徐 港, 艾天成, 刘德富, 等. 掺盐率对钢筋混凝土试件通电锈蚀特征的影响[J]. 混凝土, 2010(3): 58-60. XU G, AI T C, LIU D F, et al. Effects of the salt content on electrifying corrosion characters of reinforced concrete specimens[J]. Concrete, 2010(3): 58-60 (in Chinese). [96] 曾严红, 顾祥林, 张伟平, 等. 混凝土中钢筋加速锈蚀方法探讨[J]. 结构工程师, 2009, 25(1): 101-105. ZENG Y H, GU X L, ZHANG W P, et al. Accelerated corrosion technique for reinforcement steel bars in concrete[J]. Structural Engineers, 2009, 25(1): 101-105 (in Chinese). [97] 姬永生, 张领雷, 张 婵, 等. 氯盐外侵和内掺引起的混凝土内钢筋锈蚀特征的比较研究[J]. 徐州工程学院学报(自然科学版), 2013, 28(3): 47-52. JI Y S, ZHANG L L, ZHANG C, et al. Comparison between the corrosion characteristics of steel bar in concrete induced by chloride contaminated and mixed-into chloride[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2013, 28(3): 47-52 (in Chinese). [98] 张占武. 钢筋混凝土在氯盐及其耦合溶液中钢筋的腐蚀行为研究[D]. 兰州: 兰州理工大学, 2016. ZHANG Z W. Study on corrosion behavior of reinforced concrete in chloride and its coupling solution[D]. Lanzhou: Lanzhou University of Technology, 2016 (in Chinese). [99] 王永霖. 无机盐溶液对钢筋锈蚀的影响[D]. 重庆: 重庆大学, 2015. WANG Y L. Effect of inorganic salt solution on corrosion of steel bars [D]. Chongqing: Chongqing University, 2015 (in Chinese). [100] 刘国建, 朱 航, 张云升, 等. 混凝土孔溶液中不同侵蚀离子对钢筋的腐蚀行为[J]. 硅酸盐学报, 2022, 50(2): 413-419. LIU G J, ZHU H, ZHANG Y S, et al. Corrosion behavior of steel subjected to different corrosive ions in simulated concrete pore solution[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 413-419 (in Chinese). [101] 张 涛, 李 娜, 谢 浩, 等. 基于3D扫描技术的锈蚀钢筋形貌特征分析[J]. 武汉大学学报(工学版), 2024, 57(4): 427-434. ZHANG T, LI N, XIE H, et al. Corrosion measurement and analysis of deformed steel bars based on three-dimensional scanning[J]. Engineering Journal of Wuhan University, 2024, 57(4): 427-434 (in Chinese). [102] 孙 佳, 金祖权, 秦一琦. 钢筋非均匀锈蚀与混凝土开裂试验及数值模拟[J]. 建筑材料学报, 2024, 27(4): 309-319. SUN J, JIN Z Q, QIN Y Q. Experimental and numerical simulation on non-uniform corrosion of steel bar and concrete cracking[J]. Journal of Building Materials, 2024, 27(4): 309-319 (in Chinese). [103] 赵羽习, 金伟良. 混凝土构件锈蚀胀裂时的钢筋锈蚀率[J]. 水利学报, 2004, 35(11): 97-101. ZHAO Y X, JIN W L. Corrosion ratio of reinforcement bar in reinforced concrete construction at the moment of cracking due to corrosion expansion[J]. Journal of Hydraulic Engineering, 2004, 35(11): 97-101 (in Chinese). [104] 董 征, 付传清, 陆晨涛, 等. 基于钢筋加速非均匀锈蚀的混凝土保护层胀裂预测[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(4): 598-606. DONG Z, FU C Q, LU C T, et al. Prediction of concrete cover cracking based on accelerated non-uniform corrosion of reinforcing steel bars[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2023, 55(4): 598-606 (in Chinese). [105] SHI N N, HUANG D H, ZHANG R X. Effect of reinforcement size on concrete crack width with the same reinforcement ratio[J]. Applied Mechanics and Materials, 2012, 193/194: 600-604. [106] 徐 港, 徐丽丽, 王 青, 等. 保护层胀裂后钢筋通电锈蚀效率研究[J]. 混凝土, 2016(1): 38-42. XU G, XU L L, WANG Q, et al. Study on corrosion efficiency of reinforcing steel bar in electrifying corrosion after concrete cover cracking[J]. Concrete, 2016(1): 38-42 (in Chinese). [107] 余 波, 刘 阳, 万伟伟, 等. 混凝土中钢筋空间锈蚀特征参数的测试及分析[J]. 建筑材料学报, 2019, 22(1): 15-23. YU B, LIU Y, WAN W W, et al. Test and investigation on spatial corrosion characteristic parameters of reinforcement bar in concrete[J]. Journal of Building Materials, 2019, 22(1): 15-23 (in Chinese). [108] 李志国, 刘成义, 林陈安攀, 等. 氯盐环境下混凝土中钢筋锈蚀性能试验[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(3): 219-224. LI Z G, LIU C Y, LIN C A P, et al. Experiment on anti-corrosion property of steel in chloride concrete[J]. Journal of Tianjin University (Science and Technology), 2015, 48(3): 219-224 (in Chinese). [109] 陈少杰, 任建喜, 李 强, 等. 箍筋加速锈蚀试验方法及适用性研究[J]. 混凝土, 2017(11): 40-43+49. CHEN S J, REN J X, LI Q, et al. Stirrup accelerate corrosion test method and applicability[J]. Concrete, 2017(11): 40-43+49 (in Chinese). [110] LI Q, JIN X Y, YAN D M, et al. Study of wiring method on accelerated corrosion of steel bars in concrete[J]. Construction and Building Materials, 2021, 269: 121286. [111] 叶津剑, 童芸芸, 王倩楠. 多向式强加电流的钢筋加速腐蚀方法优化研究[J]. 材料保护, 2023, 56(3): 41-48. YE J J, TONG Y Y, WANG Q N. Optimization of accelerated corrosion of steel rebars by multidirectional current imposition[J]. Materials Protection, 2023, 56(3): 41-48 (in Chinese). [112] 刘继睿, 商怀帅, 王玮钊, 等. 钢筋混凝土的通电锈蚀电流密度及钢筋锈蚀形貌[J]. 腐蚀与防护, 2021, 42(7): 34-37+41. LIU J R, SHANG H S, WANG W Z, et al. Current density and corrosion morghology of steel bar corrosion in reinforced concrete[J]. Corrosion & Protection, 2021, 42(7): 34-37+41 (in Chinese). [113] YUAN Y, JI Y, SHAH S P. Comparison of two accelerated corrosion techniques for concrete structures[J]. ACI Structural Journal, 2007, 104(3): 344-347. [114] DU Y G, CULLEN M, LI C K. Structural performance of RC beams under simultaneous loading and reinforcement corrosion[J]. Construction and Building Materials, 2013, 38: 472-481. [115] 施锦杰, 孙 伟. 弯曲荷载与氯盐耦合作用下混凝土中钢筋锈蚀程度评估[J]. 硅酸盐学报, 2010, 38(7): 1201-1208. SHI J J, SUN W. Evaluation of steel corrosion in concrete under simultaneous flexural load and chloride attacks[J]. Journal of the Chinese Ceramic Society, 2010, 38(7): 1201-1208 (in Chinese). [116] TIAN J, WU X W, ZUO Y, et al. Interface behaviors between smart-functional ECC and steel rebar under coupling effect of sustained load and chloride ion erosion: corrosion resistance, mechanical and self-sensing properties[J]. Construction and Building Materials, 2024, 438: 137205. [117] 罗素蓉, 刘湖林. 荷载与氯盐作用下再生混凝土大偏压柱受力性能[J]. 水力发电学报, 2018, 37(5): 35-46. LUO S R, LIU H L. Mechanical performance of large eccentric compressive RAC columns under load and chloride[J]. Journal of Hydroelectric Engineering, 2018, 37(5): 35-46 (in Chinese). [118] 何世钦, 王海超, 贡金鑫. 荷载与锈蚀共同作用下钢筋混凝土梁抗弯试验研究[J]. 水力发电学报, 2007, 26(6): 46-51. HE S Q, WANG H C, GONG J X. Study on flexural experiment of reinforced concrete beams under simultaneous service loading and corrosion[J]. Journal of Hydroelectric Engineering, 2007, 26(6): 46-51 (in Chinese). [119] 陆春华, 金伟良, 延永东. 氯盐干湿环境下受弯横向裂缝对钢筋混凝土耐久性影响[J]. 海洋工程, 2012, 30(1): 131-136+144. LU C H, JIN W L, YAN Y D. Influence of transverse cracks on durability of RC member under chloride dry and wet cycles[J]. The Ocean Engineering, 2012, 30(1): 131-136+144 (in Chinese). [120] 赖 骏, 蔡 健, 左志亮, 等. 荷载和氯盐环境下RC梁非均匀锈蚀与承载力劣化试验[J]. 西南交通大学学报, 2024, 59(5): 1140-1147+1157. LAI J, CAI J, ZUO Z L, et al. Non-uniform corrosion and load bearing capacity deterioration tests of reinforced concrete beams under load and chloride salt environment[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1140-1147+1157 (in Chinese). [121] LI Q, HUANG L, YE H L, et al. Mechanical degradation of reinforced concrete columns corroded under sustained loads[J]. International Journal of Civil Engineering, 2020, 18(8): 883-901. [122] LI Q, JIN X Y, WU D, et al. Acoustic emission analysis of corroded reinforced concrete columns under compressive loading[J]. Sensors, 2020, 20(8): 2412. [123] 江 维, 张俊芝, 孙玮琨, 等. 弯曲荷载和氯盐环境下混凝土中钢筋锈蚀的不均匀性[J]. 混凝土, 2017(10): 29-31+36. JIANG W, ZHANG J Z, SUN W K, et al. Non-uniformity of reinforcement corrosion in concrete under flexural load and chloride environment[J]. Concrete, 2017(10): 29-31+36 (in Chinese). [124] 董晓宇, 金贤玉, 付传清, 等. 持续荷载作用下锈蚀钢筋横截面积概率分布模型[J]. 混凝土, 2018(10): 1-5. DONG X Y, JIN X Y, FU C Q, et al. Probability distribution model for cross-sectional area of corroded reinforcing steel barsunder sustained load[J]. Concrete, 2018(10): 1-5 (in Chinese). [125] 杨 莉, 刘 冰, 金祖权, 等. 处于不同环境中的受荷钢筋混凝土损伤行为[J]. 混凝土, 2022(4): 33-36. YANG L, LIU B, JIN Z Q, et al. Damage behavior of loaded reinforced concrete in different environment[J]. Concrete, 2022(4): 33-36 (in Chinese). [126] KOÇER M, BOĞA A R, ÖZTÜRK M. Investigation of reinforcement corrosion effects in RC columns produced with blast furnace slag and fly ash under reversed-cyclic lateral loading tests[J]. Engineering Structures, 2021, 245: 112866. [127] 李生元, 吕恒林, 吴元周, 等. 煤矿地面环境与荷载耦合作用下RC柱受压性能[J]. 中国公路学报, 2024, 37(4): 263-273. LI S Y, LYU H L, WU Y Z, et al. Compression performance of reinforced-concrete columns under coupled action of colliery ground environment and load[J]. China Journal of Highway and Transport, 2024, 37(4): 263-273 (in Chinese). [128] HE Z S, HE C, KANG X Y, et al. Effects of sustained load and reinforcement spacing on the evolution and spatial characteristics of corrosion damages in RC segmental specimens[J]. Construction and Building Materials, 2023, 407: 133462. [129] ZHAO P, XU G, WANG Q, et al. Impact of sustained load on damage characteristics of reinforced concrete beams under the combined action of salt freeze-thaw cycles and corrosion[J]. Construction and Building Materials, 2021, 273: 121744. [130] 方建柯, 徐亦冬, 徐立锋, 等. 环境-荷载耦合作用下钢筋锈蚀产物的分子动力学模拟及其锈胀力分析[J]. 硅酸盐通报, 2018, 37(10): 3275-3280. FANG J K, XU Y D, XU L F, et al. Molecular dynamics simulation and corrosion expansion analysis of reinforcement corrosion products under coupled effect of chloride and loading[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3275-3280 (in Chinese). [131] 贾康豪, 徐亦冬, 徐立峰, 等. 氯盐环境-荷载耦合作用下钢筋混凝土的锈胀历程[J]. 混凝土, 2019(1): 22-25+29. JIA K H, XU Y D, XU L F, et al. Corrosion expansion evolution of reinforced concrete under the coupling effect of chloride environment and load[J]. Concrete, 2019(1): 22-25+29 (in Chinese). [132] ABOSRRA L, ASHOUR A F, YOUSEFFI M. Corrosion of steel reinforcement in concrete of different compressive strengths[J]. Construction and Building Materials, 2011, 25(10): 3915-3925. [133] ZHAO Y X, REN H Y, DAI H, et al. Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis[J]. Corrosion Science, 2011, 53(5): 1646-1658. [134] ZHANG G Y, TIAN Y, FU C Q, et al. The impact of oxygen availability on steel corrosion considering the self-balance between anodic and cathodic corrosion cells[J]. Corrosion Science, 2024, 236: 112252. [135] SIRIVIVATNANON V, XUE C H, KHATRI R. Long-term reinforcement corrosion in low carbon concrete with a high volume of SCMs exposed to NaCl solutions and field marine environment[J]. Construction and Building Materials, 2023, 393: 132071. [136] 李永平, 刘慧源, 赵 哲, 等. 基于弹性力学理论的钢筋混凝土结构保护层锈胀开裂时间预测模型研究[J]. 结构工程师, 2022, 38(5): 8-14. LI Y P, LIU H Y, ZHAO Z, et al. Research on prediction model for time of corrosion-induced cover cracking in RC structures based on theory of elastic mechanics[J]. Structural Engineers, 2022, 38(5): 8-14 (in Chinese). [137] ZHANG L G, LIANG Z Z, LI S L. Effect of current density on the cathodic protection efficiency and mechanical properties of pre-stressed high-strength steel wires for stay cable[J]. Construction and Building Materials, 2022, 314: 125671. [138] 王晓刚, 杜相波, 闫军印, 等. 混凝土构件中钢筋锈蚀的电加速技术对比试验研究[J]. 建筑结构学报, 2015, 36(1): 104-110. WANG X G, DU X B, YAN J Y, et al. Experimental comparison of galvanostatic methods for accelerated corrosion of steel bars in RC members[J]. Journal of Building Structures, 2015, 36(1): 104-110 (in Chinese). [139] 李亚辉, 郑山锁, 董立国, 等. 非均匀锈蚀钢筋拉伸性能试验与模拟[J]. 建筑材料学报, 2022, 25(9): 991-998. LI Y H, ZHENG S S, DONG L G, et al. Tensile properties test and simulation of non-uniform corroded reinforcement[J]. Journal of Building Materials, 2022, 25(9): 991-998 (in Chinese). [140] DONG B, YU Y G, FENG Y, et al. Robust numerical solution for assessing corrosion of reinforced concrete structures under external power supply[J]. Engineering Structures, 2023, 294: 116724. [141] 刘晋宏, 罗小勇, 梁应军, 等. 长期服役结构中钢筋的纵向随机锈蚀分布特征[J]. 湖南大学学报(自然科学版), 2023, 50(5): 136-145. LIU J H, LUO X Y, LIANG Y J, et al. Longitudinal stochastic corrosion distribution characteristics of steel bar in long-term service structure[J]. Journal of Hunan University (Natural Sciences), 2023, 50(5): 136-145 (in Chinese). [142] 孙红芳, 姜 策, 曹 坤, 等. 含缺陷钢筋混凝土锈蚀特征[J]. 深圳大学学报(理工版), 2021, 38(5): 489-495. SUN H F, JIANG C, CAO K, et al. Corrosion characteristics of defective reinforced concrete[J]. Journal of Shenzhen University (Science and Engineering), 2021, 38(5): 489-495 (in Chinese). [143] 付传清, 何家豪, 金贤玉, 等. 带横向荷载裂缝钢筋混凝土梁的钢筋锈蚀形态研究[J]. 建筑结构学报, 2019, 40(1): 123-131. FU C Q, HE J H, JIN X Y, et al. Corrosion pattern of rebar in RC beam with loading transverse cracks[J]. Journal of Building Structures, 2019, 40(1): 123-131 (in Chinese). [144] 刘晋宏, 罗小勇, 肖 烨. 钢筋非均匀锈蚀及剩余截面积分布模型[J]. 华中科技大学学报(自然科学版), 2021, 49(11): 83-88. LIU J H, LUO X Y, XIAO Y. Non-uniform corrosion and distribution models of residual cross-sectional areas of rebars[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(11): 83-88 (in Chinese). [145] 宋 华, 牛获涛. 电化学快速锈蚀与自然环境钢筋锈蚀的相似性分析[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(4): 508-511. SONG H, NIU H T. Comparability analysis on corrosion by impressed current technique and corrosion in natural environment[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2009, 41(4): 508-511 (in Chinese). [146] 江雪雷, 李恩恩, 许 颖, 等. 基于太赫兹时域光谱技术的钢材锈蚀产物光学参数测量及特征识别[J]. 光学学报, 2023, 43(11): 62-70. JIANG X L, LI E E, XU Y, et al. Optical parameter measurement and characteristic identification for corrosion products of steel materials based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 2023, 43(11): 62-70 (in Chinese). [147] 姬永生, 袁迎曙, 宋 萌, 等. 不同锈蚀条件下混凝土内钢筋锈蚀物膨胀性能比较和机理分析[J]. 北京工业大学学报, 2011, 37(11): 1677-1683. JI Y S, YUAN Y S, SONG M, et al. Volume expansion characteristic and mechanism of rebar corrosion products in concrete with different corrosion approaches[J]. Journal of Beijing University of Technology, 2011, 37(11): 1677-1683 (in Chinese). [148] 徐 港, 鲍 浩, 王 青, 等. 混凝土结构中钢筋锈蚀物体积膨胀率研究[J]. 华中科技大学学报(自然科学版), 2015, 43(9): 105-109. XU G, BAO H, WANG Q, et al. Research on volumetric expansion ratio of corrosion products in concrete structure[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(9): 105-109 (in Chinese). [149] 明 静, 施锦杰, 孙 伟. 混凝土中低合金钢筋腐蚀产物的微结构分析[J]. 建筑材料学报, 2020, 23(2): 347-353. MING J, SHI J J, SUN W. Microstructural analysis of the corrosion products of low-alloy reinforcing steel in concrete[J]. Journal of Building Materials, 2020, 23(2): 347-353 (in Chinese). [150] 王海宇, 赵羽习. 混凝土对钢筋初锈阶段锈蚀产物分布的影响[J]. 混凝土, 2024(8): 7-13. WANG H Y, ZHAO Y X. Influence of concrete on the distribution of corrosion products at the initial stage of steel corrosion[J]. Concrete, 2024(8): 7-13 (in Chinese). [151] PAPÉ T M, MELCHERS R E. The effects of corrosion on 45-year-old pre-stressed concrete bridge beams[J]. Structure and Infrastructure Engineering, 2011, 7(1/2): 101-108. [152] LU C H, JIN W L, LIU R G. Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures[J]. Corrosion Science, 2011, 53(4): 1337-1347. |
| [1] | ZHANG Xinyu, PU Chuanjin, ZHOU Hang, HAN Sen, RAN Zhengxi, LI Xiaoshuang, XIAO Dingjun. Dynamic Compression Failure Characteristics and Energy Dissipation of Granite-Concrete Composite after High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1646-1655. |
| [2] | QIU Mingming, YANG Meng, LI Xiaomin, LI Shengbin. Compressive Strength Characteristics and Its Influencing Factors of High Fill Loess Solidified by Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1927-1938. |
| [3] | LIU Haoxin, QIAO Hongxia, MA Farong, FU Yong, WEI Dingbang, ZHANG Lei. Deterioration Pattern and Life Prediction of Mechanism Sand Concrete under Composite Salt Freeze-Thaw Cycle [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1634-1645. |
| [4] | SU Ying, GONG Wei, LIU Chuanbei, ZHANG Jun. Mix Ratio Design and Mechanical Properties of Phosphogypsum Lightweight Aggregate Concrete Based on Machine Learning [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1656-1665. |
| [5] | CUI Yifei, LIU Menghua, ZHANG Yicong, AI Weixia, XU Nuo. Performance and Environmental Impact of Ultra-High Performance Alkali-Activated Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1689-1702. |
| [6] | LIANG Ying, QIN Weiheng, CHEN Zongping, LI Zhibin. Flexural Performance of Coral Concrete Unidirectional Slabs Reinforced by SFCB [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1703-1716. |
| [7] | FENG Weipeng, JIN Yu, KONG Fanlong, DONG Zhijun, CAI Shiming, SHAO Ningning. Preparation of Straw Fiber Reinforced Alkali-Activated Steel Slag-Based Foamed Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1755-1766. |
| [8] | MIN Rui, LIU Xinyi, YANG Tiantian, WANG Siying, LIU Wenhuan, LI Hui. Properties, Hydration Products and Application of Circulating Fluidized Bed Fly Ash-GBFS Composite Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1813-1823. |
| [9] | LIU Chenchen, XIE Xiangbing, LI Guanghui, SIMA Xiaoqing, ZHANG Yilin, SI Bin, SHAO Jinggan. Performance Evaluation of Wet Carbonization Recycled Sand Powder and Formation Mechanism of Early Strength of Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1834-1840. |
| [10] | ZHONG Chuanli, SU Xu, ZHANG Liang, KONG Zihang, LI Haitian, ZHU Qingnan, CHANG Honglei. Effect of Carbonized Recycled Fine Aggregate on Mechanical Properties of Recycled Mortar and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1468-1476. |
| [11] | XIAO Ciyu, ZHANG Haiyan, ZHAN Jianchao, BU Jibin. Preparation and Application of Non-Sintered Lightweight and High-Strength Ceramsite from Residual Clay of Waste Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1428-1437. |
| [12] | HUANG Liang, LI Beixing, YANG Yucheng, TIAN Shenhua. Effect of Mineral Viscosity Reducer on Rheological, Mechanical Properties and Durability of Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1458-1467. |
| [13] | LIU Shengyuan, WANG Jiantao, ZHANG Wenqin, LIU Yunpeng. Preparation and Properties of Magnesium Carbide Slag Based Preplaced Lightweight Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1377-1385. |
| [14] | YU Qinxin, LIU Wen. Pozzolanic Activity of Biochar Used in Concrete: a Review [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1243-1254. |
| [15] | WANG Fan, LONG Guangcheng, BAI Min, SHI Yingying. Analysis of Performance and Environmental Effect of Electrolytic Manganese Residue-Based Green Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1386-1397. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||