BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (2): 651-665.DOI: 10.16552/j.cnki.issn1001-1625.2024.1042
• Ceramics • Previous Articles Next Articles
CHEN Yujie, LI Junsheng, LI Chenxiao, CHEN Yurong, WAN Fan
Received:
2024-09-04
Revised:
2024-11-24
Online:
2025-02-15
Published:
2025-02-28
CLC Number:
CHEN Yujie, LI Junsheng, LI Chenxiao, CHEN Yurong, WAN Fan. Research Progress on Sintering Densification Technology of h-BN Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 651-665.
[1] STEHLE Y, MEYER H M III, UNOCIC R R, et al. Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology[J]. Chemistry of Materials, 2015, 27(23): 8041-8047. [2] PEREVISLOV S N. Structure, properties, and applications of graphite-like hexagonal boron nitride[J]. Refractories and Industrial Ceramics, 2019, 60(3): 291-295. [3] ZHANG Z W, HU S Q, CHEN J, et al. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation[J]. Nanotechnology, 2017, 28(22): 225704. [4] JIANG P Q, QIAN X, YANG R G, et al. Anisotropic thermal transport in bulk hexagonal boron nitride[J]. Physical Review Materials, 2018, 2(6): 064005. [5] CAO C C, YANG J W, YANG S B, et al. Pressureless welding of temperature-invariant multifunctionality body based on hydroxyl-functionalized boron nitride nanosheets and bifunctional monoethanolamine cross-linker[J]. Small, 2024, 20(38): e2401387. [6] DUAN X M, WANG M R, JIA D C, et al. Anisotropic mechanical properties and fracture mechanisms of textured h-BN composite ceramics[J]. Materials Science and Engineering: A, 2014, 607: 38-43. [7] GAO X J, YAN D M, CAO J W, et al. The study on the property and the microstructure of pressureless sintered h-BN ceramics[J]. Advanced Materials Research, 2015, 1104: 9-14. [8] 雷玉成, 包旭东, 刘 军, 等. 六方氮化硼无压烧结研究[J]. 兵器材料科学与工程, 2005, 28(4): 20-23. LEI Y C, BAO X D, LIU J, et al. Research on pressureless sintering of hexagonal boron nitride[J]. Ordnance Material Science and Engineering, 2005, 28(4): 20-23 (in Chinese). [9] HAGIO T, KOBAYASHI K, YOSHIDA H, et al. Sintering of the mechanochemically activated powders of hexagonal boron nitride[J]. Journal of the American Ceramic Society, 1989, 72(8): 1482-1484. [10] WANG T B, JIN C C, YANG J, et al. Physical and mechanical properties of hexagonal boron nitride ceramic fabricated by pressureless sintering without additive[J]. Advances in Applied Ceramics, 2015, 114(5): 273-276. [11] 王太保, 陆 聪, 刘 涛, 等. 浸渍-裂解工艺对无压烧结制备六方氮化硼陶瓷性能的影响[J]. 人工晶体学报, 2016, 45(3): 718-724+742. WANG T B, LU C, LIU T, et al. Effect of impregnation-pyrolysis process on the properties of pressureless sintered hexagonal boron nitride ceramics[J]. Journal of Synthetic Crystals, 2016, 45(3): 718-724+742 (in Chinese). [12] 王会媛. 3D打印制备h-BN-MAS复合陶瓷[D]. 哈尔滨: 哈尔滨工业大学, 2018: 10-19. WANG H Y. Preparation of h-BN-MAS composite ceramics by 3D printing[D]. Harbin: Harbin Institute of Technology, 2018: 10-19 (in Chinese). [13] ZHANG X, CHEN J X, LI X C, et al. Microstructure and mechanical properties of h-BN/Y2SiO5 composites[J]. Ceramics International, 2015, 41(1): 1279-1283. [14] TIAN Z, LU J N, FENG X W, et al. Effects of cross-scale h-BN grains and orientation degree on the mechanical and thermal properties of BN-matrix textured ceramics[J]. Ceramics International, 2023, 49(8): 12481-12490. [15] DENG Y C, WU S L, JIANG Y J, et al. Study on viscosity of the La2O3-SiO2-Al2O3 slag system[J]. Metallurgical and Materials Transactions B, 2016, 47(4): 2433-2439. [16] IFTEKHAR S, GRINS J, EDÉN M. Composition-property relationships of the La2O3-Al2O3-SiO2 glass system[J]. Journal of Non-Crystalline Solids, 2010, 356(20/21/22): 1043-1048. [17] NIU B, CAI D L, YANG Z H, et al. Anisotropies in structure and properties of hot-press sintered h-BN-MAS composite ceramics: effects of raw h-BN particle size[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 539-546. [18] QIU B F, DUAN X M, ZHANG Z, et al. Microstructural evolution and mechanical properties of h-BN composite ceramics with Y2O3-AlN addition by liquid-phase sintering[J]. Rare Metals, 2020, 39(5): 555-561. [19] TIAN Z, WANG Y, ZHANG Z, et al. Preparation of highly oriented h-BN based textured ceramics via grain rearrangement under DLP printing and low-pressure sintering[J]. Materials Letters, 2020, 268: 127584. [20] 邹春荣, 沈同圣, 郭少军, 等. 一种氮化硅纳米纤维增强氮化硼陶瓷及其制备方法: CN110330349B[P]. 2020-10-30. ZOU C R, SHENG T S, GUO S J, et al. A preparation method of silicon nitride nanofiber reinforced boron nitride ceramics: CN110330349B[P]. 2020-10-30 (in Chinese). [21] FAZEN P J, REMSEN E E, BECK J S, et al. Synthesis, properties, and ceramic conversion reactions of polyborazylene. A high-yield polymeric precursor to boron nitride[J]. Chemistry of Materials, 1995, 7(10): 1942-1956. [22] ESLAMI-SHAHED H, NEKOUEE K, EHSANI N. The effects of adding CNTs and GNPs on the microstructure and mechanical properties of hexagonal-boron nitride[J]. Ceramics International, 2020, 46(14): 22005-22014. [23] XUE J X, LIU J X, XIE B H, et al. Pressure-induced preferential grain growth, texture development and anisotropic properties of hot pressed hexagonal boron nitride ceramics[J]. Scripta Materialia, 2011, 65(11): 966-969. [24] QIU B F, DUAN X M, ZHANG Z, et al. Microstructure and room/elevated-temperature mechanical properties of hot-pressed h-BN composite ceramics with La2O3-Al2O3-SiO2 addition[J]. Journal of the European Ceramic Society, 2020, 40(6): 2260-2267. [25] QIU B F, DUAN X M, ZHANG Z, et al. Microstructural evolution of h-BN matrix composite ceramics with La-Al-Si-O glass phase during hot-pressed sintering[J]. Journal of Advanced Ceramics, 2021, 10(3): 493-501. [26] ERTUG B, BOYRAZ T, ADDEMIR O. Microstructural aspects of the hot-pressed hexagonal boron nitride ceramics with limited content of boron oxide[J]. Materials Science Forum, 2007, 554: 197-200. [27] 翟凤瑞, 单 科, 李 楠, 等. 氮化硼陶瓷的低温热压烧结及其性能研究[J]. 陶瓷学报, 2019, 40(4): 464-468. ZHAI F R, SHAN K, LI N, et al. Study on properties of boron nitride ceramics prepared by low temperature hot-pressing sintering[J]. Journal of Ceramics, 2019, 40(4): 464-468 (in Chinese). [28] NIU B, YANG Z H, CAI D L, et al. MAS-content dependence of the texture and fracture behavior of h-BN-MAS composite ceramics[J]. Ceramics International, 2019, 45(15): 18536-18542. [29] WANG H Y, CAI D L, YANG Z H, et al. Influence of sintering temperature on the crystallization and mechanical properties of BN-MAS composites[J]. Journal of the American Ceramic Society, 2022, 105(5): 3590-3600. [30] NIU B, CAI D L, YANG Z H, et al. Effects of sintering temperature on the microstructure and properties of h-BN ceramics with MAS as liquid sintering aid[J]. Ceramics International, 2020, 46(1): 1076-1082. [31] LIAO N, NIU B, QIU B F, et al. Enhanced thermal shock resistance of BN-based composites sintered by hot-pressing with the introduction of nano oxides[J]. Materials Science and Engineering: A, 2019, 767: 138443. [32] ZHANG Z, DUAN X M, QIU B F, et al. Anisotropic properties of textured h-BN matrix ceramics prepared using 3Y2O3-5Al2O3(-4MgO) as sintering additives[J]. Journal of the European Ceramic Society, 2019, 39(5): 1788-1795. [33] GUILLON O, GONZALEZ-JULIAN J, DARGATZ B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments[J]. Advanced Engineering Materials, 2014, 16(7): 830-849. [34] HU J, SHEN Z. Grain growth by multiple ordered coalescence of nanocrystals during spark plasma sintering of SrTiO3 nanopowders[J]. Acta Materialia, 2012, 60(18): 6405-6412. [35] SHEN Z J, JOHNSSON M, ZHAO Z, et al. Spark plasma sintering of alumina[J]. Journal of the American Ceramic Society, 2002, 85(8): 1921-1927. [36] CHEN J J, CHENG J, ZHU S Y, et al. Tribological behavior under 1 200 ℃ elevated temperature of spark plasma sintered h-BN bulk[J]. Tribology International, 2024, 193: 109420. [37] ZHAI F R, LI S, SUN J L, et al. Microstructure, mechanical properties and thermal shock behavior of h-BN-SiC ceramic composites prepared by spark plasma sintering[J]. Ceramics International, 2017, 43(2): 2413-2417. [38] 翟凤瑞, 单 科, 卢 敏, 等. 六方氮化硼陶瓷的烧结及其结构与性能[J]. 硅酸盐学报, 2018, 46(6): 807-812. ZHAI F R, SHAN K, LU M, et al. Structure and properties of hexagonal boron nitride ceramics by different sintering methods[J]. Journal of the Chinese Ceramic Society, 2018, 46(6): 807-812 (in Chinese). [39] ZHAI F R, LU M, SHAN K, et al. Spark plasma sintering and characterization of mixed h-BN powders with different grain sizes[J]. Solid State Phenomena, 2018, 281: 414-419. [40] YILMAZ Z, AY N. The investigation of synthesis and textured properties of in situ formed h-BN with spark plasma sintering[J]. Materials Chemistry and Physics, 2024, 316: 129043. [41] YANG H T, FANG H L, YU H, et al. Low temperature self-densification of high strength bulk hexagonal boron nitride[J]. Nature Communications, 2019, 10(1): 854. [42] 段小明, 杨治华, 王玉金, 等. 六方氮化硼(h-BN)基复合陶瓷研究与应用的最新进展[J]. 中国材料进展, 2015, 34(10): 770-782. DUAN X M, YANG Z H, WANG Y J, et al. Research and application progress of hexagonal boron nitride (h-BN) based composite ceramics[J]. Materials China, 2015, 34(10): 770-782 (in Chinese). [43] GAO X J, ZHANG C, MAN P, et al. Reaction mechanism and microstructure evolution of reaction sintered h-BN[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2017, 32(2): 345-348. [44] GAO X J, ZHANG C, LI Z P, et al. Fabrications, microstructure and mechanical behaviors of h-BN matrix ceramic[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2015, 9(7): 969-973. [45] 高晓菊, 史 超, 李蕾蕾, 等. h-BN陶瓷的制备与抗冲击性能研究[J]. 陶瓷学报, 2020, 41(4): 520-524. GAO X J, SHI C, LI L L, et al. Study on the fabrication and impact resistance of reaction sintering h-BN ceramic[J]. Journal of Ceramics, 2020, 41(4): 520-524 (in Chinese). [46] LIU K, WANG J, WU T, et al. Effects of carbon content on microstructure and mechanical properties of SiC ceramics fabricated by SLS/RMI composite process[J]. Ceramics International, 2020, 46(14): 22015-22023. [47] 谢志鹏. 结构陶瓷[M]. 北京: 清华大学出版社, 2011. XIE Z. Structural ceramics[M]. Beijing: Tsinghua University Press, 2011 (in Chinese). [48] XIE Z P, LI S, AN L N. A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics[J]. Journal of the American Ceramic Society, 2014, 97(4): 1012-1015. [49] HAN Y, LI S, ZHU T B, et al. An oscillatory pressure sintering of zirconia powder: rapid densification with limited grain growth[J]. Journal of the American Ceramic Society, 2017, 100(7): 2774-2780. [50] 李 双, 谢志鹏. 振荡压力烧结法制备高致密度细晶粒氧化锆陶瓷[J]. 无机材料学报, 2016, 31(2): 207-212. LI S, XIE Z P. Preparation of zirconia ceramics with high density and fine grains by oscillatory pressure sintering[J]. Journal of Inorganic Materials, 2016, 31(2): 207-212 (in Chinese). [51] 韩 耀. 高性能结构陶瓷的振荡压力烧结与机理研究[D]. 北京: 清华大学, 2018: 95-103. HAN Y. Oscillating pressure sintering and mechanism research of high performance structural ceramics[D]. Beijing: Tsinghua University, 2018: 95-103 (in Chinese). [52] HAN Y, LI S, ZHU T B, et al. An oscillatory pressure sintering of zirconia powder: densification trajectories and mechanical properties[J]. Journal of the American Ceramic Society, 2018, 101(5): 1824-1829. [53] 韩 耀, 谢志鹏, 李海燕, 等. 新型振荡压力烧结工艺对高性能氮化硼陶瓷微观结构和性能的影响[J]. 硅酸盐学报, 2021, 49(12): 2549-2555. HAN Y, XIE Z P, LI H Y, et al. Effect of oscillatory pressure sintering process on microstructure and properties of boron nitride ceramics with high performance[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2549-2555 (in Chinese). [54] CANNON R M, CARTER W C. Interplay of sintering microstructures, driving forces, and mass transport mechanisms[J]. Journal of the American Ceramic Society, 1989, 72(8): 1550-1555. [55] ROLLETT A D, SROLOVITZ D J, ANDERSON M P. Simulation and theory of abnormal grain growth: anisotropic grain boundary energies and mobilities[J]. Acta Metallurgica, 1989, 37(4): 1227-1240. [56] JIANG R, SHI Z Y, ZHAO W, et al. Vacancy-assisted growth mechanism of multilayer hexagonal boron nitride on a Fe2B substrate[J]. The Journal of Physical Chemistry Letters, 2020, 11(20): 8511-8517. [57] CAO C C, YANG J W, YANG S B, et al. Pressureless consolidation of boron nitride fiber ceramics via a chemical bonding approach[J]. Journal of the European Ceramic Society, 2023, 43(12): 5223-5230. [58] GUO J, GUO H Z, BAKER A L, et al. Cold sintering: a paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie (International Edition), 2016, 55(38): 11457-11461. [59] SENGUL M Y, GUO J, RANDALL C A, et al. Water-mediated surface diffusion mechanism enables the cold sintering process: a combined computational and experimental study[J]. Angewandte Chemie (International Edition), 2019, 58(36): 12420-12424. [60] MARIA J P, KANG X Y, FLOYD R D, et al. Cold sintering: current status and prospects[J]. Journal of Materials Research, 2017, 32(17): 3205-3218. [61] GUO H Z, BAKER A, GUO J, et al. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics[J]. Journal of the American Ceramic Society, 2016, 99(11): 3489-3507. [62] GUO H Z, BAYER T J M, GUO J, et al. Cold sintering process for 8%Y2O3-stabilized ZrO2 ceramics[J]. Journal of the European Ceramic Society, 2017, 37(5): 2303-2308. [63] KÄHÄRI H, TEIRIKANGAS M, JUUTI J, et al. Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics[J]. Journal of the American Ceramic Society, 2015, 98(3): 687-689. [64] GUO J, GUO H Z, HEIDARY D S B, et al. Semiconducting properties of cold sintered V2O5 ceramics and co-sintered V2O5-PEDOT: pss composites[J]. Journal of the European Ceramic Society, 2017, 37(4): 1529-1534. [65] BAKER A, GUO H Z, GUO J, et al. Utilizing the cold sintering process for flexible-printable electroceramic device fabrication[J]. Journal of the American Ceramic Society, 2016, 99(10): 3202-3204. [66] GUO H Z, GUO J, BAKER A, et al. Cold sintering process for ZrO2-based ceramics: significantly enhanced densification evolution in yttria-doped ZrO2[J]. Journal of the American Ceramic Society, 2017, 100(2): 491-495. [67] FUNAHASHI S, GUO J, GUO H Z, et al. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics[J]. Journal of the American Ceramic Society, 2017, 100(2): 546-553. [68] ZHU J Y, LI F, HOU Y Z, et al. Near-room-temperature water-mediated densification of bulk van der Waals materials from their nanosheets[J]. Nature Materials, 2024, 23(5): 604-611. |
[1] | XING Yupei, LIU Peng, HAN Dan, ZHANG Jian, WANG Jun, MA Jie, XU Xiaodong. Effect of La3+ on Densification Process, Optical and Mechanical Properties of MgAl2O4 Transparent Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 1048-1057. |
[2] | WANG Xin, HAN Bingqiang, MIAO Zheng, CHEN Junfeng, YAN Wen. Effect of MgCl2·6H2O Solution on Properties of Periclase-Magnesia Alumina Spinel Refractories [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 719-726. |
[3] | WANG Huitao, GUAN Lili, FENG Hongyu, LI Ming, SONG Xiwen, GUO Ruihua. Research Status of Preparation and Electrical Properties of Lanthanum Chromate Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(1): 258-266. |
[4] | LYU Simin, YANG Jinping, HAN Dan, LIU Mengwei, ZHANG Jian, WANG Shiwei. Effect of La2O3 on Densification and Properties of Transparent Magnesium Aluminate Spinel Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2719-2725. |
[5] | ZHANG Fan;HAN Feng-qi;LI Wen;FAN Bing-bing. Preparation of Fly Ash Architectural Ceramics by Hot Pressing Sintering Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(4): 1430-1434. |
[6] | XIE Peng-yong;HAO Chang-an;LUO Xu-dong. Effect of TiO2 Addition on Densification Behavior of Magnesium Aluminate Spinel Synthesized by Solid-state Sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(3): 1101-1105. |
[7] | BAI Xing-liang;QIAO Rui-qing;ZHANG Cui-min. Phase Transition and Densification of Silicon Nitride Ceramics by Low-Temperature Pressureless Sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(9): 3053-3056. |
[8] | ZHANG Xiao;LIANG Sen;GAO Mang-mang. Transparent Alumina Prepared by Three-step Sintering of Compacts Basing on Powder Injection Molding Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(1): 250-253. |
[9] | ZHANG Xi-ling;CHEN Lin;XIANG Yun;WEN Zhong-he;WANG Xian-zhong. Batch Formula and Sintering Technology of Haydite Prepared with Coal Gangue [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2015, 34(8): 2371-2375. |
[10] | ZHANG Ning;LIU Huan;WANG Xiao-yang;KAN Hong-min;LONG Hai-bo. Sintering Density of SiC-YAG Ceramic Composite Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2015, 34(8): 2125-2129. |
[11] | MA Ai-qiong;DUAN Feng. Mechanisms of TiSi2 Enhancing Sintering Densification of TiB2 Ceramic [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2015, 34(6): 1679-1683. |
[12] | ZHOU Qian;SONG Sheng-dong;XU Ke-zhou;ZHANG Ying;CHEN Jia-sen;TANG Zhu-xing. Research on Synthesis and Densification of AlON [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2014, 33(2): 393-396. |
[13] | ZHANG Wei-yi;GAO Hong;ZHANG Li-ming. Densification of Machinable Fluoramphibole Glass-ceramics Prepared by Reactive Crystallization-sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2009, 28(5): 1088-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||