硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 1-20.DOI: 10.16552/j.cnki.issn1001-1625.2025.0700
• 水泥混凝土 • 下一篇
王文胜1(
), 吕海龙1, 马江涛1, 刘琦2, 聂晓东1(
)
收稿日期:2025-07-18
修订日期:2025-09-02
出版日期:2026-01-20
发布日期:2026-02-09
通信作者:
聂晓东,博士,讲师。E-mail:1767816209@qq.com
作者简介:王文胜(1983—),男,博士,教授。主要从事结构有限元分析和结构优化设计研究。E-mail:wswang@live.cn
基金资助:
WANG Wensheng1(
), LYU Hailong1, MA Jiangtao1, LIU Qi2, NIE Xiaodong1(
)
Received:2025-07-18
Revised:2025-09-02
Published:2026-01-20
Online:2026-02-09
摘要:
珊瑚混凝土是以珊瑚砂、礁灰岩等为骨料,掺入水泥、粉煤灰等胶凝材料与外加剂,并以海水拌制而成的海洋工程材料。在海洋工程及岛礁建设中可最大限度实现就地取材、节约资源、降低运输成本,对推动岛礁工程建设具有重要意义。本文系统介绍了珊瑚原材料特性、珊瑚混凝土的改性方法、配合比设计,以及在静态力学性能、动态力学性能、抗侵彻与抗爆炸性能等方面的研究进展。分析了配合比设计、矿物掺合料及纤维增强技术对提升珊瑚混凝土力学性能的影响。并对当前珊瑚混凝土研究中存在的问题进行了探讨与展望,以期为珊瑚混凝土在岛礁工程建设方面的大规模应用提供关键技术支撑,助力海洋强国战略的实施。
中图分类号:
王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20.
WANG Wensheng, LYU Hailong, MA Jiangtao, LIU Qi, NIE Xiaodong. Research Status on Basic Mechanical Properties and Engineering Applications of Coral Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 1-20.
| Strength grade of coral-SWSSC | Mix proportion/(kg·m-3) | 28 d compressive strength/MPa | ||||
|---|---|---|---|---|---|---|
| Cement | Sea sand | Coral | Net water consumption | Total water consumption | ||
| C20 | 340 | 926.64 | 655.67 | 153.00 | 251.35 | 23.49 |
| C25 | 380 | 888.03 | 680.89 | 171.00 | 273.13 | 28.02 |
| C30 | 495 | 868.73 | 693.96 | 173.30 | 277.39 | 30.19 |
| C35 | 550 | 849.42 | 706.10 | 181.50 | 287.42 | 35.47 |
| C40 | 600 | 830.12 | 718.71 | 198.00 | 305.81 | 40.10 |
| C45 | 693 | 791.51 | 743.93 | 228.70 | 340.29 | 45.43 |
| C50 | 726 | 772.20 | 756.54 | 239.60 | 353.08 | 50.21 |
表1 海砂珊瑚混凝土最佳配合比[32]
Table 1 Optimum mix proportion of sea sand coral concrete[32]
| Strength grade of coral-SWSSC | Mix proportion/(kg·m-3) | 28 d compressive strength/MPa | ||||
|---|---|---|---|---|---|---|
| Cement | Sea sand | Coral | Net water consumption | Total water consumption | ||
| C20 | 340 | 926.64 | 655.67 | 153.00 | 251.35 | 23.49 |
| C25 | 380 | 888.03 | 680.89 | 171.00 | 273.13 | 28.02 |
| C30 | 495 | 868.73 | 693.96 | 173.30 | 277.39 | 30.19 |
| C35 | 550 | 849.42 | 706.10 | 181.50 | 287.42 | 35.47 |
| C40 | 600 | 830.12 | 718.71 | 198.00 | 305.81 | 40.10 |
| C45 | 693 | 791.51 | 743.93 | 228.70 | 340.29 | 45.43 |
| C50 | 726 | 772.20 | 756.54 | 239.60 | 353.08 | 50.21 |
| Literature | Concrete strength | Type of fiber | Optimal content/(kg·m-3) | Improvement effect |
|---|---|---|---|---|
| [ | C30 | CF | 6.7 | Compressive strength increased by 22% |
| [ | C30 | PPF | 2.0 | Compressive strength increased by 17.4% |
| [ | C30 | SF | 2.2 | Peak shear stress increased by 15% |
| [ | C30 | BF | 3.8 | Peak shear stress increased by 15% |
表2 纤维对珊瑚混凝土改性效果
Table 2 Modification effect of fiber on coral concrete
| Literature | Concrete strength | Type of fiber | Optimal content/(kg·m-3) | Improvement effect |
|---|---|---|---|---|
| [ | C30 | CF | 6.7 | Compressive strength increased by 22% |
| [ | C30 | PPF | 2.0 | Compressive strength increased by 17.4% |
| [ | C30 | SF | 2.2 | Peak shear stress increased by 15% |
| [ | C30 | BF | 3.8 | Peak shear stress increased by 15% |
| Literature | Bullet weight/kg | Bullet path/mm | Strength/ MPa | Velocity/ (m·s-1) | Penetrate the depths/mm | Formula error/% | |||
|---|---|---|---|---|---|---|---|---|---|
表3 弹体侵彻珊瑚混凝土靶试验数据及公式预测误差
Table 3 Experimental data of projectile penetration into coral concrete targets and formula prediction error
| Literature | Bullet weight/kg | Bullet path/mm | Strength/ MPa | Velocity/ (m·s-1) | Penetrate the depths/mm | Formula error/% | |||
|---|---|---|---|---|---|---|---|---|---|
| [1] | AMADI A N. UFC 3-210-05 Unified facilities criteria: tropical engineering[S]. Washington D C: U.S. Army Corps of Engineers, 2004. |
| [2] | 刘鑫, 张偲. 中国特色海洋生态系统的特征与保护利用[J]. 中国科学院院刊, 2024, 39(9): 1591-1601. |
| LIU X, ZHANG S. Characteristics and protection of marine ecosystems with chinese characteristics[J]. Bulletin of the Chinese Academy of Sciences, 2024, 39(9): 1591-1601 (in Chinese). | |
| [3] | 马林建, 李增, 陈欣星, 等. 珊瑚混凝土基本特性及工程应用研究进展[J]. 硅酸盐通报, 2018, 37(8): 2471-2477. |
| MA L J, LI Z, CHEN X X, et al. Research progress on basic properties and engineering application of coral concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2471-2477 (in Chinese). | |
| [4] | 康太平. 珊瑚混凝土研究现状综述及趋势[J]. 福建建材, 2022(5): 107-112 |
| KANG T P. Review and trend of research on coral concrete[J]. Fujian Building Materials, 2022(5): 107-112 (in Chinese). | |
| [5] | 郭超. 南海岛礁珊瑚集料混凝土工程性能研究[D]. 南京: 东南大学, 2017. |
| GUO C. Study on engineering properties of coral aggregate concrete for nanhai island reefs[D]. Nanjing: Southeast University, 2017 (in Chinese). | |
| [6] |
QIN Q L, MENG Q S, LI W W, et al. Surface chemical properties of coral powder and its effect on hydration and pore structure of cement slurry[J]. Thermochimica Acta, 2022, 717: 179356.
DOI URL |
| [7] |
YANG Z T, QIN Y, XUE C R, et al. Experimental study on the generalized dynamic modulus of saturated marine coral sand subjected to different cyclic loading patterns[J]. Ocean Engineering, 2024, 310: 118507.
DOI URL |
| [8] |
MA C H, ZHU C Q, OU R, et al. Influence of the particle morphology and internal porosity characteristics of coral sand in the South China Sea on its limit void ratio[J]. Powder Technology, 2023, 428: 118771.
DOI URL |
| [9] |
ZHANG B, ZHU H, LI F Z, et al. Compressive stress-strain behavior of seawater coral aggregate concrete incorporating eco-efficient alkali-activated slag materials[J]. Construction and Building Materials, 2021, 299: 123886.
DOI URL |
| [10] |
WANG A G, LYU B C, ZHANG Z H, et al. The development of coral concretes and their upgrading technologies: a critical review[J]. Construction and Building Materials, 2018, 187: 1004-1019.
DOI URL |
| [11] | 娄昕骐, 刘文化, 李吴刚. 珊瑚砂抗剪强度及颗粒破碎影响因素试验研究[J]. 大连理工大学学报, 2024, 64(4): 384-392. |
| LOU X Q, LIU W H, LI W G, et al. Experimental study on shear strength of coral sand and factors influencing particle breakage[J]. Journal of Dalian University of Technology, 2024, 64(4): 384-392 (in Chinese). | |
| [12] | 姚如胜, 陈宗平. 珊瑚混凝土材料性能及其早龄期强度统计与分析[J]. 混凝土, 2023(12): 152-157. |
| YAO R S, CHEN Z P. Material properties and early-age strength statistics and analysis of coral concrete[J]. Concrete, 2023(12): 152-157 (in Chinese). | |
| [13] | 吕亚茹, 王冲, 黄厚旭, 等. 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352-360. |
| LV Y R, WANG C, HUANG H X, et al. Study on meso-particle structure and crushing characteristics of coral sand[J]. Rock and Soil Mechanics, 2021, 42(2): 352-360 (in Chinese). | |
| [14] | 刘师喆. 改性珊瑚骨料混凝土耐久性能研究[D]. 重庆: 重庆大学, 2023. |
| LIU S Z. Study on durability of modified coral aggregate concrete[D]. Chongqing: Chongqing University, 2023 (in Chinese). | |
| [15] |
MA L J, LI Z, LIU J G, et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression[J]. Construction and Building Materials, 2019, 199: 244-255.
DOI URL |
| [16] |
WANG B, SHI W H, WU Q, et al. Fly ash/silica fume coral concrete with modified polypropylene fiber for sustainable building construction[J]. Advances in Civil Engineering, 2022, 2022: 4230801.
DOI URL |
| [17] |
HUANG D G, NIU D T, SU L, et al. Effects of mineral admixtures on chloride diffusion in environment-friendly coral aggregate concrete[J]. Journal of Renewable Materials, 2022, 10(12): 3477-3489.
DOI URL |
| [18] |
SHEN J H, XU D S, LIU Z W, et al. Effect of particle characteristics stress on the mechanical properties of cement mortar with coral sand[J]. Construction and Building Materials, 2020, 260: 119836.
DOI URL |
| [19] | 姚 燕, 王振地, 王 玲, 等. 一种利用珊瑚礁石制备粗骨料的方法及其混凝土: CN201610079268.8[P]. 2016-07-06. |
| YAO Y, WANG Z D, WANG L, et al. A method for preparing coarse aggregate from coral reefs and its concrete: CN201610079268.8[P]. 2016-07-06 (in Chinese). | |
| [20] |
WANG L, WANG J L, QIAN X, et al. An environmentally friendly method to improve the quality of recycled concrete aggregates[J]. Construction and Building Materials, 2017, 144: 432-441.
DOI URL |
| [21] | NARVER D L. Good concrete made with coral and sea water[J]. Civil Engineering, 1954, 24(11): 49-52. |
| [22] | HOWDYSHELL P A. The use of coral as an aggregate for Portland cement concrete structures[R]. Army Construction Engineering Research Laboratory, 1974. |
| [23] | BULLEN F. Coralline concrete in the pacific[C]//China Civil Engineering Society, Canadian Society for Civil Engineering, China Academy of Building Research. Proceedings of the Third International Colloquium on Concrete in Developing Countries. Lecturer, School of Civil Engineering, QUT, 1990: 14-25. |
| [24] | RICK A E. Coral concrete at bikini atoll[J]. Concrete International, 1991, 1: 19-24. |
| [25] | 王以贵. 珊瑚混凝土在港工中应用的可行性[J]. 水运工程, 1988(9): 46-48. |
| WANG Y G. Feasibility of application of coral concrete in port engineering[J]. Port and Waterway Engineering, 1988(9): 46-48 (in Chinese). | |
| [26] | 陈兆林, 陈天月, 曲勣明. 珊瑚礁砂混凝土的应用可行性研究[J]. 海洋工程, 1991(3): 67-80. |
| CHEN Z L, CHEN T Y, QU J M. Study on feasibility of application of coral reef sand concrete[J]. The Ocean Engineering, 1991(3): 67-80 (in Chinese). | |
| [27] | 袁银峰. 全珊瑚海水混凝土的配合比设计和基本性能[D]. 南京: 南京航空航天大学, 2015. |
| YUAN Y F. Mix proportion design and basic properties of all-coral seawater concrete[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
| [28] | 达波, 余红发, 袁银峰. 全珊瑚混凝土的配合比设计与抗压强度规律[C]// 江苏省第九届混凝土新技术研讨会论文集. 2014: 122-125. |
| DA B, YU H F, YUAN Y F. Mix proportion design and compressive strength law of all-coral concrete[C]// Proceedings of the 9th Jiangsu Provincial Symposium on New Concrete Technologies. 2014: 122-125 (in Chinese). | |
| [29] |
ARUMUGAM R A, RAMAMURTHY K. Study of compressive strength characteristics of coral aggregate concrete[J]. Magazine of Concrete Research, 1996, 48(176): 141-148.
DOI URL |
| [30] |
WANG X P, YU R, SHUI Z H, et al. Mix design and characteristics evaluation of an eco-friendly ultra-high performance concrete incorporating recycled coral based materials[J]. Journal of Cleaner Production, 2017, 165: 70-80.
DOI URL |
| [31] |
PENG Y X, YU L Y, LI W, et al. Study on static mechanical properties and numerical simulation of coral aggregate seawater shotcrete with reasonable mix proportion[J]. Materials, 2024, 17(10): 2353.
DOI URL |
| [32] |
SUN L, YANG Z Y, QIN R Y, et al. Mix design optimization of seawater sea sand coral aggregate concrete[J]. Science China Technological Sciences, 2023, 66(2): 378-389.
DOI |
| [33] | 李仲欣, 韦灼彬, 沈锦林. 基于BP神经网络的珊瑚混凝土抗压强度预测模型[J]. 混凝土, 2016(1): 64-69+74. |
| LI Z X, WEI Z B, SHEN J L. Prediction model of compressive strength of coral concrete based on BP neural network[J]. Concrete, 2016(1): 64-69+74 (in Chinese). | |
| [34] | 李仲欣, 韦灼彬, 沈锦林. 相关向量机在珊瑚混凝土抗压强度预测中的应用[J]. 混凝土, 2016(7): 1-6. |
| LI Z X, WEI Z B, SHEN J L. Application of relevance vector machine in prediction of compressive strength of coral concrete[J]. Concrete, 2016(7): 1-6 (in Chinese). | |
| [35] | 韩超. 海水拌养珊瑚混凝土基本力学性能试验研究[D]. 南宁: 广西大学, 2011. |
| HAN C. Experimental study on basic mechanical properties of coral concrete mixed with seawater[D]. Nanning: Guangxi University, 2011 (in Chinese). | |
| [36] | 郑皓. 干湿循环条件下珊瑚混凝土中氯离子扩散行为研究[D]. 西安: 西安建筑科技大学, 2020. |
| ZHENG H. Research on chloride ion diffusion behavior in coral concrete under dry-wet cycling conditions[D]. Xi’an: Xi’an University of Architecture and Technology, 2020 (in Chinese). | |
| [37] |
ZHANG B, PENG H, XIONG T, et al. Towards enhancing the durability of seawater coral aggregate concrete under drying-wetting cycles with slag-based geopolymers[J]. Journal of Sustainable Cement-Based Materials, 2024, 13(3): 389-401.
DOI URL |
| [38] |
WU W J, WANG R, ZHU C Q, et al. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete[J]. Construction and Building Materials, 2018, 185: 69-78.
DOI URL |
| [39] |
CHENG S K, SHUI Z H, SUN T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete[J]. Applied Clay Science, 2017, 141: 111-117.
DOI URL |
| [40] |
ZHANG B, ZHU H, CAO R M. Mechanical properties and drying shrinkage of alkali-activated seawater coral aggregate concrete[J]. Journal of Sustainable Cement-Based Materials, 2022, 11(6): 408-417.
DOI URL |
| [41] | 杨海峰, 柳岸然, 黄莹. 不同粗骨料强化方法对全珊瑚骨料混凝土基本力学性能影响[J]. 混凝土, 2023(8): 109-114. |
| YANG H F, LIU A R, HUANG Y. Influence of different coarse aggregate strengthening methods on basic mechanical properties of all-coral aggregate concrete[J]. Concrete, 2023(8): 109-114 (in Chinese). | |
| [42] |
冯兴国, 顾卓然, 范琦琦, 等. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
DOI |
| FENG X G, GU Z R, FAN Q Q, et al. Study on corrosion resistance of 2205 stainless steel bars in modified coral concrete[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(3): 789-796 (in Chinese). | |
| [43] |
LIU J M, JU B Y, YIN Q, et al. Properties of concrete prepared with silane coupling agent-impregnated coral aggregate and coral concrete[J]. Materials, 2021, 14(21): 6454.
DOI URL |
| [44] | 郭曈, 欧忠文, 唐军务, 等. PVA改性水泥基珊瑚骨料试验研究[J]. 当代化工, 2017, 46(11): 2213-2218. |
| GUO T, OU Z W, TANG J W, et al. Experimental research on modification of coral aggregate for concrete cement by PVA[J]. Contemporary Chemical Industry, 2017, 46(11): 2213-2218 (in Chinese). | |
| [45] |
达波, 余红发, 麻海燕, 等. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
DOI |
| DA B, YU H F, MA H Y, et al. Effect of admixture method of rust inhibitor on steel corrosion in all-coral seawater concrete[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(2): 152-159 (in Chinese). | |
| [46] | 陈飞翔, 高玉军, 张国志, 等. 珊瑚礁砂混凝土外加剂优选复配技术研究[J]. 新型建筑材料, 2020, 47(1): 117-122. |
| CHEN F X, GAO Y J, ZHANG G Z, et al. Study on the compounding technology of coral reef sand concrete admixture[J]. New Building Materials, 2020, 47(1): 117-122 (in Chinese). | |
| [47] | 王磊, 王国旭, 邓雪莲. 不同掺量碳纤维珊瑚混凝土力学性能试验研究[J]. 中国农村水利水电, 2014(9): 148-151+156. |
| WANG L, WANG G X, DENG X L. Experimental study on mechanical properties of coral concrete with different carbon fiber contents[J]. China Rural Water and Hydropower, 2014(9): 148-151+156 (in Chinese). | |
| [48] | 王磊, 熊祖菁, 刘存鹏, 等. 掺入聚丙烯纤维珊瑚混凝土的力学性能研究[J]. 混凝土, 2014(7): 96-99. |
| WANG L, XIONG Z J, LIU C P, et al. Study on mechanical properties of coral concrete with polypropylene fiber[J]. Concrete, 2014(7): 96-99 (in Chinese). | |
| [49] | 王 磊, 刘存鹏, 熊祖菁. 剑麻纤维增强珊瑚混凝土力学性能试验研究[J]. 河南理工大学学报(自然科学版), 2014, 33(6): 826-830. |
| WANG L, LIU C P, XIONG Z J, et al. Experimental study on mechanical properties of sisal fiber reinforced coral concrete[J]. Journal of Henan Polytechnic University (Natural Science), 2014, 33(6): 826-830 (in Chinese). | |
| [50] | 崔艺博, 郑云, 饶兰. 玄武岩纤维珊瑚混凝土力学性能试验研究[J]. 混凝土, 2020(12): 74-76. |
| CUI Y B, ZHENG Y, RAO L. Experimental study on mechanical properties of basalt fiber coral concrete[J]. Concrete, 2020(12): 74-76 (in Chinese). | |
| [51] |
LIU B, WANG F H, ZOU C Z, et al. Comparison of the mechanical properties and constitutive models of carbon fiber-reinforced coral concrete cubes and prisms under uniaxial compression[J]. Journal of Building Engineering, 2024, 98: 111247.
DOI URL |
| [52] |
DAI J Y, YIN S P, WANG F, et al. Analysis of microstructure and compressive properties of full coral concrete under fiber reinforcement[J]. Journal of Building Engineering, 2024, 93: 109826.
DOI URL |
| [53] |
CHEN Z P, LIANG Y, QIN Q Q, et al. Mechanical properties and constitutive model of sisal fiber coral seawater concrete under uniaxial cyclic compression[J]. Journal of Building Engineering, 2025, 100: 111646.
DOI URL |
| [54] |
ZHOU Y W, XIAO J Z, DENG Z H, et al. Mechanical properties and damage constitutive model of basalt fibre-reinforced coral concrete under compression-shear loading[J]. Journal of Building Engineering, 2024, 98: 111217.
DOI URL |
| [55] | HUANG D G, NIU D T, SU L, et al. Durability of coral aggregate concrete under coupling action of sulfate, chloride and drying-wetting cycles[J]. Case Studies in Construction Materials, 2022, 16: e01003. |
| [56] | 进毅, 龙志林, 郭瑞奇, 等. PVA纤维增强珊瑚混凝土静动态力学性能试验研究[J]. 中外公路, 2024, 44(2): 138-147. |
| JIN Y, LONG Z L, GUO R Q, et al. Experimental study on static and dynamic mechanical properties of PVA fiber reinforced coral concrete[J]. Journal of China and Foreign Highway, 2024, 44(2): 138-147 (in Chinese). | |
| [57] |
LIU B, ZHOU J K, WEN X Y, et al. Experimental investigation on the impact resistance of carbon fibers reinforced coral concrete[J]. Materials, 2019, 12(23): 4000.
DOI URL |
| [58] | 易金, 刘超, 王磊. 聚丙烯纤维增强珊瑚混凝土抗冲击性能试验研究[J]. 科学技术与工程, 2019, 19(4): 244-248. |
| YI J, LIU C, WANG L. Experimental study on impact resistance of polypropylene fiber reinforced coral concrete[J]. Science Technology and Engineering, 2019, 19(4): 244-248 (in Chinese). | |
| [59] | 刘晋铭, 张寿松, 周亭, 等. 聚乙烯醇和超高分子量聚乙烯纤维对全珊瑚混凝土动态力学性能影响与数值模拟[J]. 复合材料学报, 2023, 40(6): 3613-3625. |
| LIU J M, ZHANG S T, ZHOU T, et al. Influence and numerical simulation of PVA and UHMWPE fibers on dynamic mechanical properties of all-coral concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3613-3625 (in Chinese). | |
| [60] | 王磊, 范蕾. 珊瑚碎屑混凝土的强度特性及破坏形态分析[J]. 混凝土与水泥制品, 2015(1): 1-4. |
| WANG L, FAN L. Analysis on strength characteristics and failure modes of coral debris concrete[J]. China Concrete And Cement Products, 2015(1):1-4 (in Chinese). | |
| [61] | 赵艳林, 韩超, 张栓柱, 等. 海水拌养珊瑚混凝土抗压龄期强度试验研究[J]. 混凝土, 2011(2): 43-45. |
| ZHAO Y L, HAN C, ZHANG S Z, et al. Experimental study on compressive age strength of coral concrete mixed with seawater[J]. Concrete, 2011(2): 43-45 (in Chinese). | |
| [62] | 郑秀梅, 杨国生, 黄杨. 南海海域全珊瑚海水混凝土抗压强度试验研究[J]. 混凝土, 2019(5): 135-137+141. |
| ZHENG X M, YANG G S, HUANG Y. Experimental study on compressive strength of all-coral seawater concrete in South China Sea[J]. Concrete, 2019(5): 135-137+141 (in Chinese). | |
| [63] | 达波, 冯基恒, 倪雷, 等. 岛礁全珊瑚混凝土的力学性能及提升措施[J]. 哈尔滨工程大学学报, 2023, 44(2): 204-210. |
| DA B, FENG J H, NI L, et al. Mechanical properties and improvement measures of all-coral concrete for island reefs[J]. Journal of Harbin Engineering University, 2023, 44(2): 204-210 (in Chinese). | |
| [64] | 王昱锦. 长期荷载下珊瑚混凝土的徐变性能研究[D]. 镇江: 江苏科技大学, 2021. |
| WANG Y J. Research on the creep performance of coral concrete under long-term loading[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021 (in Chinese). | |
| [65] |
CHEN C Y, JI T, ZHUANG Y Z, et al. Workability, mechanical properties and affinity of artificial reef concrete[J]. Construction and Building Materials, 2015, 98: 227-236.
DOI URL |
| [66] | 高屹, 韦灼彬, 孙潇. 珊瑚骨料混凝土基本力学性能试验研究[J]. 海军工程大学学报, 2017, 29(1): 64-68. |
| GAO Y, WEI Z B, SUN X. Experimental study on basic mechanical properties of coral aggregate concrete[J]. Journal of Naval University of Engineering, 2017, 29(1): 64-68 (in Chinese). | |
| [67] |
ZHANG B, ZHU H. Durability of seawater coral aggregate concrete under seawater immersion and dry-wet cycles[J]. Journal of Building Engineering, 2023, 66: 105894.
DOI URL |
| [68] | 刘兵, 李元举, 王洋, 等. 多尺度混杂纤维增强珊瑚混凝土的单轴压缩性能[J]. 硅酸盐学报, 2024, 52(5): 1543-1553. |
| LIU B, LI Y J, WANG Y, et al. Uniaxial compression performance of multi-scale hybrid fiber reinforced coral concrete[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1543-1553 (in Chinese). | |
| [69] | Comite Euro-International Du Beton. CEB-FIP model code 1990[M]. Trowbridge: Redwood Books, 1993: 48-51. |
| [70] | 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982(1): 1-12. |
| GUO Z H, ZHANG X Q, ZHANG D C, et al. Experimental study on complete stress-strain curve of concrete[J]. Journal of Building Structures, 1982(1): 1-12 (in Chinese). | |
| [71] |
QIN H. Vulnerability assessment for a steel framed industrial building subjected to wind and storm surge[J]. Journal of Building Engineering, 2026, 118: 115009.
DOI URL |
| [72] |
RAZI S, LOUHGHALAM A, TOOTKABONI M. A potential of mean force-based lattice element method for nonlinear analysis of structures[J]. International Journal of Mechanical Sciences, 2026, 309: 111022.
DOI URL |
| [73] | 徐金俊, 唐月月, 陈宇良, 等. 海水海洋骨料混凝土霍普金森压杆动态力学性能试验研究[J]. 振动与冲击, 2022, 41(14): 233-242. |
| XU J J, TANG Y Y, CHEN Y L, et al. Experimental study on dynamic mechanical properties of seawater marine aggregate concrete by Hopkinson pressure bar[J]. Journal of Vibration and Shock, 2022, 41(14): 233-242 (in Chinese). | |
| [74] | 贺添益, 吴玮栋, 朱圆, 等. 珊瑚混凝土的抗冲击性能数值模拟研究[J]. 兵器装备工程学报, 2023, 44(11): 57-66. |
| HE T Y, WU W D, ZHU Y, et al. Numerical simulation studies on the impact resistance of coral concrete[J]. Journal of Ordnance Equipment Engineering, 2023, 44(11): 57-66 (in Chinese). | |
| [75] | 吴彰钰, 余红发, 麻海燕, 等. C45珊瑚混凝土的冲击压缩性能试验及数值模拟[J]. 东南大学学报(自然科学版), 2020, 50(3): 488-495. |
| WU Z Y, YU H F, MA H Y, et al. Experimental and numerical simulation on impact compression performance of C45 coral concrete[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(3): 488-495 (in Chinese). | |
| [76] | 苏春义. 海水拌合珊瑚礁砂混凝土耐久性研究[D]. 武汉: 武汉理工大学, 2017. |
| SU C Y. Study on the durability of coral reef sand concrete mixed with seawater[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese). | |
| [77] | 邓潇. 弯曲应力作用下珊瑚混凝土氯离子传输及钢筋锈蚀研究[D]. 镇江: 江苏科技大学, 2023. |
| DENG X. Research on chloride ion transport and rebar corrosion in coral concrete under bending stress[D]. Zhenjiang: Jiangsu University of Science and Technology, 2023 (in Chinese). | |
| [78] | 梅其泉. 强动载作用下珊瑚混凝土力学性能的试验研究与数值模拟[D]. 南京: 南京航空航天大学, 2023. |
| MEI Q Q. Experimental research and numerical simulation on the mechanical properties of coral concrete under strong dynamic loading[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023 (in Chinese). | |
| [79] | 侯晓峰, 郭东, 王昊坤, 等. 高强珊瑚砂混凝土制备及抗侵彻试验研究[J]. 防护工程, 2025, 47(2): 1-5. |
| HOU X F, GUO D, WANG H K, et al. Preparation and anti-penetration test of high-strength coral sand concrete[J]. Protection Engineering, 2025, 47(2): 1-5 (in Chinese). | |
| [80] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings[J]. International Journal of Impact Engineering, 2018, 120: 60-78.
DOI URL |
| [81] |
ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact[J]. International Journal of Impact Engineering, 2005, 31(7): 825-841.
DOI URL |
| [82] |
WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC[J]. International Journal of Impact Engineering, 2015, 84: 38-53.
DOI URL |
| [83] |
SOVJÁK R, VAVŘINÍK T, ZATLOUKAL J, et al. Resistance of slim UHPFRC targets to projectile impact using in-service bullets[J]. International Journal of Impact Engineering, 2015, 76: 166-177.
DOI URL |
| [84] |
MÁCA P, SOVJÁK R, KONVALINKA P. Mix design of UHPFRC and its response to projectile impact[J]. International Journal of Impact Engineering, 2014, 63: 158-163.
DOI URL |
| [85] | YOUNG C W. Penetration equations: SAND-97-2426 [R]. Albuquerque: Sandia National Laboratories, 1997. |
| [86] | National Defense Research Committee. Effects of impact and explosion: summary technical report of division 2, vol. 1[R]. Washington DC: National Defense Research Committee, 1946. |
| [87] |
CHELAPATI C V, KENNEDY R P, WALL I B. Probabilistic assessment of aircraft hazard for nuclear power plants[J]. Nuclear Engineering and Design, 1972, 19(2): 333-364.
DOI URL |
| [88] | 任辉启, 穆朝民, 刘瑞超, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016: 293-294. |
| REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection[M]. Beijing: Science Press, 2016: 293-294 (in Chinese). | |
| [89] | 周宁, 任辉启, 沈兆武, 等. 弹丸侵彻钢筋混凝土的工程解析模型[J]. 爆炸与冲击, 2007(6): 529-534. |
| ZHOU N, REN H Q, SHEN Z W, et al. Engineering analytical model for projectile penetration into reinforced concrete[J]. Explosion and Shock Waves, 2007(6): 529-534 (in Chinese). | |
| [90] |
LIU J, WU C Q, LIU Z X, et al. Investigations on the response of ceramic ball aggregated and steel fibre reinforced geopolymer-based ultra-high performance concrete (G-UHPC) to projectile penetration[J]. Composite Structures, 2021, 255: 112983.
DOI URL |
| [91] | 聂晓东, 吴祥云, 龙志林, 等. 弹体对超高性能混凝土侵彻深度的研究[J]. 爆炸与冲击, 2024, 44(2): 136-150. |
| NIE X D, WU X Y, LONG Z L, et al. Study on projectile penetration depth into ultra-high performance concrete[J]. Explosion and Shock Waves, 2024, 44(2): 136-150 (in Chinese). | |
| [92] | 范威, 蔡路军, 吴立过, 等. 玻璃纤维增强型钢筋混凝土梁抗爆性能试验研究[J]. 工程爆破, 2024, 30(3): 29-35+45. |
| FAN W, CAI L J, WU L G, et al. Experimental study on anti-explosion performance of glass fiber reinforced reinforced concrete beams[J]. Engineering Blasting, 2024, 30(3): 29-35+45 (in Chinese). | |
| [93] | 张琪悦, 刘彦, 闫俊伯, 等. 爆炸载荷作用下不同强度超高性能混凝土梁毁伤效应[J]. 兵工学报, 2025, 46(2): 3-18. |
| ZHANG Q Y, LIU Y, YAN J B, et al. Damage effect of ultra-high performance concrete beams with different strengths under explosive loading[J]. Acta Armamentarii, 2025, 46(2): 3-18 (in Chinese). | |
| [94] | 孙雁新, 王成, 王浩宇, 等. 爆炸载荷作用下高强度混凝土毁伤效应的数值模拟及试验研究[J]. 力学学报, 2024, 56(11): 3243-3261. |
| SUN Y X, WANG C, WANG H Y, et al. Numerical simulation and experimental study on damage effect of high-strength concrete under explosive loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3243-3261 (in Chinese). | |
| [95] | 杜闯, 刘晓彤, 李艳艳, 等. 冲击爆炸荷载下UHPC动态本构模型研究现状[J]. 混凝土, 2024(11): 51-54+60. |
| DU C, LIU X T, LI Y Y, et al. Research status of UHPC dynamic constitutive model under impact and explosion loads[J]. Concrete, 2024 (11): 51-54+60 (in Chinese). | |
| [96] | 黄帅. 近距离侧向爆炸荷载作用下钢筋珊瑚混凝土梁的动力响应[D]. 西安: 西安建筑科技大学, 2020. |
| HUANG S. Dynamic response of reinforced coral concrete beams under close-range lateral explosive loading[D]. Xi’an: Xi’an University of Architecture and Technology, 2020 (in Chinese). | |
| [97] | 李 涛, 余红发, 麻海燕, 等. 珊瑚混凝土抗爆炸力学性能试验研究[C]// 全国第一届南海岛礁工程环境力学会议摘要集, 佛山, 2024: 30. |
| LI T, YU H F, MA H Y, et al. Experimental study on the explosion-resistant mechanical properties of coral concrete[C]// The First National Conference on Environmental Mechanics of South China Sea Island-Reef Engineering, Foshan, 2024: 30 (in Chinese). | |
| [98] |
YU H F, DA B, MA H Y, et al. Durability of concrete structures in tropical atoll environment[J]. Ocean Engineering, 2017, 135: 1-10.
DOI URL |
| [99] | 林伟才. 海水拌制珊瑚礁砂混凝土的特性及工程应用研究[D]. 广东: 华南理工大学, 2017. |
| LIN W C. Study on the characteristics and engineering applications of coral reef sand concrete mixed with seawater[D]. Guangdong: South China University of Technology, 2017 (in Chinese). | |
| [100] | 达波, 余红发, 麻海燕, 等. 南海海域珊瑚混凝土结构的耐久性影响因素[J]. 硅酸盐学报, 2016, 44(2): 253-260. |
| DA B, YU H F, MA H Y, et al. Influencing factors on durability of coral concrete structures in the South China Sea[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 253-260 (in Chinese). |
| [1] | 蔡银, 李睿, 包天鹏. 细粒式磷渣在公路基层中的应用研究[J]. 硅酸盐通报, 2026, 45(1): 202-211. |
| [2] | 李相国, 史湘琴, 安万东, 龚志雄, 张呈山, 吕阳. 铁相调控对高贝利特铁铝酸盐水泥性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3127-3136. |
| [3] | 虞爱平, 程梓宸, 李正康, 李秀鑫, 刘咏琪, 陈宣东. 海水流动性对氯离子在混凝土中扩散性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3238-3245. |
| [4] | 周益凡, 张伟业, 陈安见, 冉金林, 王东星. 地聚合物注浆材料性能增强及工程应用研究综述[J]. 硅酸盐通报, 2025, 44(8): 2873-2890. |
| [5] | 胡建林, 李智林, 周永祥, 冷发光, 杜修力. 生石灰激发高炉矿渣-粉煤灰地质聚合物固化土力学特性研究[J]. 硅酸盐通报, 2025, 44(8): 2912-2923. |
| [6] | 彭宇一, 朱铁梅, 韩国旗, 吕梦樊, 张昕雨, 王岩. 氯盐和杂散电流耦合作用下混凝土阻抗性能研究[J]. 硅酸盐通报, 2025, 44(7): 2495-2502. |
| [7] | 徐存东, 杨百昌, 王海若, 邹璇, 汪志航, 李博飞. 复合盐冻侵蚀下玄武岩纤维混凝土力学性能试验研究[J]. 硅酸盐通报, 2025, 44(6): 2101-2110. |
| [8] | 贺鑫鑫, 武鑫江, 王子龙, 王靖, 吴昊, 李德军, 王霞. 高性能掺合料对隧道喷射混凝土性能的影响及机理研究[J]. 硅酸盐通报, 2025, 44(6): 2121-2134. |
| [9] | 崔祎菲, 刘梦华, 张益聪, 艾威侠, 徐诺. 超高性能碱激发混凝土的性能及环境影响研究[J]. 硅酸盐通报, 2025, 44(5): 1689-1702. |
| [10] | 梁莹, 覃伟恒, 陈宗平, 李志彬. 钢-连续纤维复合筋珊瑚混凝土单向板受弯性能研究[J]. 硅酸盐通报, 2025, 44(5): 1703-1716. |
| [11] | 张会芳, 陈洁, 王磊, 李晓辰, 李金珠, 刘凯宏, 曹慧, 任泽江, 刘哲颖. 酸激发剂对固废材料及其灌浆料性能的影响[J]. 硅酸盐通报, 2025, 44(5): 1788-1802. |
| [12] | 黄亮, 李北星, 杨宇程, 田沈华. 矿物质降黏剂对再生骨料混凝土流变、力学与耐久性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1458-1467. |
| [13] | 赵晓晴, 蒋成, 黄勃, 战楚南, 周子萌, 赵明睿, 杨天风. 碱渣-粉煤灰稳定土力学性能研究[J]. 硅酸盐通报, 2025, 44(4): 1504-1512. |
| [14] | 刘彦浩, 刘路路, 刘涛, 张艳, 余刘成, 张顶飞, 战元喆. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究[J]. 硅酸盐通报, 2025, 44(4): 1513-1524. |
| [15] | 李祖仲, 毛浩天, 王亮, 吴志宽, 文硕, 刘卫东. 混凝土早强修补材料基准水泥配合比优化研究[J]. 硅酸盐通报, 2025, 44(3): 802-810. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||