[1] YU K Q, LU Z D. Determining residual double-K fracture toughness of post-fire concrete using analytical and weight function method[J]. Materials and Structures, 2014, 47(5): 839-852. [2] DABBAGHI F, FALLAHNEJAD H, NASROLLAHPOUR S, et al. Evaluation of fracture energy, toughness, brittleness, and fracture process zone properties for lightweight concrete exposed to high temperatures[J]. Theoretical and Applied Fracture Mechanics, 2021, 116: 103088. [3] ZHANG W, LIU Y, & ZHAO H. Fracture process zone characteristics of steel fiber reinforced concrete after high temperature exposure[J]. Construction and Building Materials, 2021, 287, 123093. [4] LI M, ZHANG X, & WANG Q. Fracture mechanics of nano-silica modified concrete after high temperature exposure[J]. Journal of Materials in Civil Engineering, 2022, 34(5), 04022038. [5] WANG X, YANG J, LI Y. Experimental study on fracture process zone of recycled aggregate concrete after high temperature exposure[J]. Cement and Concrete Research, 2023, 162, 107014. [6] ALAM S Y, SALIBA J, LOUKILI A. Fracture examination in concrete through combined digital image correlation and acoustic emission techniques[J]. Construction and Building Materials, 2014, 69: 232-242. [7] HAMRAT M, BOULEKBACHE B, CHEMROUK M, et al. Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using Digital Image Correlation technique[J]. Construction and Building Materials, 2016, 106: 678-692. [8] 潘 兵, 吴大方, 高镇同, 等. 1 200 ℃高温热环境下全场变形的非接触光学测量方法研究[J]. 强度与环境, 2011, 38(1): 52-59. PAN B, WU D F, GAO Z T, et al. Study of non-contact optical metrology for full-field deformation measurement at 1 200 ℃[J]. Structure & Environment Engineering, 2011, 38(1): 52-59 (in Chinese). [9] 王 伟. 数字图像相关方法在热结构材料高温变形测试中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2014. WANG W. Application of digital image correlation method in high-temperature deformation testing of thermal structural materials[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). [10] 陈 李. 基于DIC的高温材料机械性能测量技术研究[D]. 合肥: 合肥工业大学, 2016. CHEN L. Research on mechanical property measurement technology of high-temperature materials based on DIC[D]. Hefei: Hefei University of Technology, 2016 (in Chinese). [11] 李宝地, 崔正龙, 高明浩. 多因素协同强化煤矸石粗骨料混凝土断裂性能试验研究[J/OL]. 复合材料学报, 2024: 1-10 (2024-11-06) [2025-02-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241105002&dbname=CJFD&dbcode=CJFQ. LI B D, CUI Z L, GAO M H. Experimental study on fracture performance of coal gangue coarse aggregate concrete strengthened by multi-factors[J/OL]. China Industrial Economics, 2024: 1-10 (2024-11-06) [2025-02-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241105002&dbname=CJFD&dbcode=CJFQ (in Chinese). [12] 卿龙邦, 曹国瑞, 管俊峰. 基于DIC方法的混凝土允许损伤尺度试验研究[J]. 工程力学, 2019, 36(10): 115-121. QING L B, CAO G R, GUAN J F. Experimental investigation of the concrete permissible damage scale based on the digital image correlation method[J]. Engineering Mechanics, 2019, 36(10): 115-121 (in Chinese). [13] PATHAK S S, VESMAWALA G R, KHANDELWAL R, et al. Fracture assessment of concrete through digital image correlation (DIC) technique[J]. Journal of Building Pathology and Rehabilitation, 2024, 9(2): 132. [14] 吴恺云, 罗素蓉, 郑建岚. 基于非接触式观测技术的再生骨料混凝土断裂性能分析[J]. 工程力学, 2022, 39(3): 147-157. WU K Y, LUO S R, ZHENG J L. Fracture propertie analysis of recycled aggregate concrete based on digital image correlation technique[J]. Engineering Mechanics, 2022, 39(3): 147-157 (in Chinese). [15] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specifications for mix design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architecture & Building Press, 2011 (in Chinese). [16] 徐世烺. 混凝土断裂试验与断裂韧度测定标准方法[M]. 北京: 机械工业出版社, 2010. XU S L. Standard methods for concrete fracture test and fracture toughness measurement[M]. Beijing: China Machine Press, 2010 (in Chinese). [17] 王怀文, 亢一澜, 谢和平. 数字散斑相关方法与应用研究进展[J]. 力学进展, 2005, 35(2): 195-203. WANG H W, KANG Y L, XIE H P. Advance in digital speckle correlation method and its application[J]. Advances in Mechanics, 2005, 35(2): 195-203 (in Chinese). [18] PAN B. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J]. Measurement Science and Technology, 2018, 29(8): 082001. [19] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011. XU S L. Fracture mechanics of concrete[M]. Beijing: Science Press, 2011 (in Chinese). [20] XU S L, REINHARDT H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, part II: analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2): 151-177. [21] Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(4): 287-290. [22] PETERSSON P. Crack growth and development of fracture zones in plain concrete and similar materials[J]. Report TVBM-1006, 1981: 1. [23] 张 东, 刘娟淯, 陈 兵, 等. 关于三点弯曲法确定混凝土断裂能的分析[J]. 建筑材料学报, 1999, 2(3): 206-211. ZHANG D, LIU J Y, CHEN B, et al. Analysis of the determination of fracture energy of concrete using three point bending method[J]. Journal of Building Materials, 1999, 2(3): 206-211 (in Chinese). [24] 赵艳华. 混凝土断裂过程中的能量分析研究[D]. 大连: 大连理工大学, 2002. ZHAO Y H. Research on energy analysis in the fracture process of concrete[D]. Dalian: Dalian University of Technology, 2002 (in Chinese). [25] GUINEA G V, PLANAS J, ELICES M. Measurement of the fracture energy using three-point bend tests: part 1: influence of experimental procedures[J]. Materials and Structures, 1992, 25(4): 212-218. [26] PLANAS J, ELICES M, GUINEA G V. Measurement of the fracture energy using three-point bend tests: part 2: influence of bulk energy dissipation[J]. Materials and Structures, 1992, 25(5): 305-312. [27] ELICES M, GUINEA G V, PLANAS J. Measurement of the fracture energy using three-point bend tests: part 3: influence of cutting TheP-δ tail[J]. Materials and Structures, 1992, 25(6): 327-334. [28] 赵燕茹, 刘 明, 王 磊, 等. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 110-117. ZHAO Y R, LIU M, WANG L, et al. Evolution law of concrete strength and pore structure after carbonization at high temperature[J]. Materials Reports, 2022, 36(19): 110-117 (in Chinese). [29] REN B, BAI E L, LUO X, et al. Impact mechanical properties and pore structure of graphene oxide concrete at high temperature[J]. Journal of Building Engineering, 2024, 85: 108593. |