[1] 陈少杰, 任建喜, 刘 浪, 等. 冻融与盐蚀耦合作用下混凝土的细观特征与损伤演化规律[J]. 硅酸盐学报, 2024, 52(11): 3524-3536. CHEN S J, REN J X , LIU L, et al. Mesoscopic characteristics and damage evolution of concrete under the combined action of freeze-thaw and salt erosion[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3524-3536 (in Chiniese). [2] 牛荻涛, 杨瑞希, 吕 瑶, 等. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 1-15 (2024-04-17)[2024-05-12]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240415.1357.019.html. NIU D T, YANG R X, LU Y, et al. Performance deterioration of concrete under the combined action of SO2 and CO2[J]. Materials Reports, 1-15 (2024-04-17)[2024-05-12]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240415.1357.019.html (in Chiniese). [3] 徐文远, 李 微, 王大洋, 等. 碱冻耦合作用FRP加固混凝土性能损伤机理研究[J]. 吉林大学学报(工学版), 1-13 (2024-03-09)[2024-05-12]. https://doi.org/10.13229/j.cnki.jdxbgxb.20231016. XU W Y, LI W, WANG D Y, et al. Study on the damage mechanism of FRP reinforced concrete under alkali freezing coupling effect[J]. Journal of Jilin University (Engineering and Technology Edition), 1-13 (2024-03-09)[2024-05-12]. https://doi.org/10.13229/j.cnki.jdxbgxb.20231016 (in Chiniese). [4] LI C, LI J Q, REN Q, et al. Durability of concrete coupled with life cycle assessment: review and perspective[J]. Cement and Concrete Composites, 2023, 139: 105041. [5] 胡安龙, 薛国斌, 尚志鹏, 等. 氯盐干湿循环侵蚀下磁性浆液修复混凝土损伤劣化特性[J]. 水利水电技术(中英文), 1-10 (2024-05-07)[2024-05-12]. http://kns.cnki.net/kcms/detail/10.1746.TV.20240507.1155.002.html. HU A L, XUE G B, SHANG Z P, et al. Study on repairing damage and deterioration of concrete by magnetic grout under dry-wet cycle erosion with chlorine salts[J]. Water Resources and Hydropower Engineering, 1-10 (2024-05-07)[2024-05-12]. http://kns.cnki.net/kcms/detail/10.1746.TV.20240507.1155.002.html (in Chiniese). [6] 徐存东, 汪志航, 陈家豪, 等. 盐-冻侵蚀环境下聚丙烯纤维混凝土的寿命预测[J]. 硅酸盐通报, 2024, 43(6): 2111-2120+2129. XU C D, WANG Z H, CHEN J H, et al. Life prediction of polypropylene fiber reinforced concrete under salt-freeze erosion environment[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2111-2120+2129 (in Chinese). [7] COLLEPARDI M, MARCIALIS A, TURRIZIANI R. Penetration of chloride ions into cement pastes and concretes[J]. Journal of the American Ceramic Society, 1972, 55(10): 534-535. [8] MANGAT P S, MOLLOY B T. Prediction of long term chloride concentration in concrete[J]. Materials and Structures, 1994, 27(6): 338-346. [9] XI Y P, BAANT Z P. Modeling chloride penetration in saturated concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(1): 58-65. [10] 王元战, 吕彦伟, 龙俞辰, 等. 粗骨料对混凝土界面过渡区氯离子扩散性能影响[J]. 海洋工程, 2018, 36(2): 73-82. WANG Y Z, LV Y W, LONG Y C, et al. Effect of coarse aggregate on chloride diffusion properties in the interfacial transition zone of concrete[J]. The Ocean Engineering, 2018, 36(2): 73-82 (in Chiniese). [11] 刘 镇. 海洋环境下混凝土氯离子渗透性评价[J]. 硅酸盐学报, 2023, 51(11): 2846-2856. LIU Z. Chloride permeability evaluation of concretes in marine environment[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2846-2856 (in Chinese). [12] 王少伟, 肖焰钰, 朱平华, 等. 钙溶蚀对混凝土抗氯离子侵蚀性能的影响[J]. 材料导报, 2024, 38(16): 130-136. WANG S W, XIAO Y Y, ZHU P H, et al. Effect of calcium leaching on chloride penetration resistance of concrete[J]. Materials Reports, 2024, 38(16): 130-136 (in Chiniese). [13] EHSANI M, OSTOVARI M, MANSOURI S, et al. Machine learning for predicting concrete carbonation depth: a comparative analysis and a novel feature selection[J]. Construction and Building Materials, 2024, 417: 135331. [14] QU F, XIA W, SUN C T, et al. Modeling carbonation depth of recycled aggregate concrete containing chlorinated salts[J]. Construction and Building Materials, 2024, 430: 136478. [15] 王柳南, 陈家海, 郑舜元, 等. 机制砂混凝土抗碳化性能研究[J]. 混凝土, 2023(12): 170-174. WANG L N, CHEN J H, ZHENG S Y, et al. Study on carbonation resistance of manufactured sand concrete[J]. Concrete, 2023(12): 170-174 (in Chinese). [16] LIU P, YU Z W, CHEN Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment[J]. Cement and Concrete Composites, 2020, 114: 103736. [17] 杨海成, 胡正涛, 于 方, 等. 海水环境粉煤灰混凝土结构耐久性现场检测与评估分析[J]. 海洋工程, 2019, 37(2): 104-111. YANG H C, HU Z T, YU F, et al. Field test and evaluation analysis on durability of fly ash concrete structuresin seawater environment[J]. The Ocean Engineering, 2019, 37(2): 104-111 (in Chiniese). [18] 赵 晖, 张亚梅, 明 静. 海工码头结构混凝土耐久性检测与评估[J]. 水利水运工程学报, 2013(5): 54-60. ZHAO H, ZHANG Y M, MING J. Tests and evaluation of structural concrete durability at Ningbo marine wharf[J]. Hydro-Science and Engineering, 2013(5): 54-60 (in Chinese). [19] 王传坤, 高祥杰, 赵羽习, 等. 混凝土表层氯离子含量峰值分布和对流区深度[J]. 硅酸盐通报, 2010, 29(2): 262-267. WANG C K, GAO X J, ZHAO Y X, et al. Peak value distribution of surface chloride concentration and convection depth of concrete[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(2): 262-267 (in Chinese). [20] 徐存东, 李博飞, 李 准, 等. 早期受盐-冻耦合作用下掺玄武岩纤维混凝土耐久性劣化规律[J]. 硅酸盐通报, 2024, 43(3): 816-824. XU C D, LI B F, LI Z, et al. Durability deterioration law of basalt fiber concrete under early salt-freezing coupling effect[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 816-824 (in Chinese). [21] 张全红, 王 涛, 穆 松, 等. 不同侵蚀环境下喷射混凝土耐久性提升技术及作用机理[J]. 硅酸盐通报, 2024, 43(4): 1410-1419. ZHANG Q H, WANG T, MU S, et al. Durability improvement and mechanism of shotcrete under different corrosion environments[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(4): 1410-1419 (in Chinese). |